Suppr超能文献

与边界渗流相关的三维伊辛模型中可能出现的新相变。

Possible new phase transition in the 3D Ising model associated with boundary percolation.

作者信息

Grady Michael

机构信息

Department of Physics, State University of New York at Fredonia, Fredonia, NY 14063, United States of America.

出版信息

J Phys Condens Matter. 2023 Apr 21;35(28). doi: 10.1088/1361-648X/accbf8.

Abstract

In the ordered phase of the 3D Ising model, minority spin clusters are surrounded by a boundary of dual plaquettes. As the temperature is raised, these spin clusters become more numerous, and it is found that eventually their boundaries undergo a percolation transition when about 13% of spins are minority. Boundary percolation differs from the more commonly studied site and link percolation, although it is related to an unusual type of site percolation that includes next to nearest neighbor relationships. Because the Ising model can be reformulated in terms of the domain boundaries alone, there is reason to believe boundary percolation should be relevant here. A symmetry-breaking order parameter is found in the dual theory, the 3D gauge Ising model. It is seen to undergo a phase transition at a coupling close to that predicted by duality from the boundary percolation. This transition lies in the disordered phase of the gauge theory and has the nature of a spin-glass transition. Its critical exponentν∼1.3is seen to match the finite-size shift exponent of the percolation transition further cementing their connection. This predicts a very weak specific heat singularity with exponentα∼-1.9. The third energy cumulant fits well to the expected non-infinite critical behavior in a manner consistent with both the predicted exponent and critical point, indicating a true thermal phase transition. Unlike random boundary percolation, the Ising boundary percolation has two differentexponents, one associated with largest-cluster scaling and the other with finite-size transition-point shift. This suggests there may be two different correlation lengths present.

摘要

在三维伊辛模型的有序相中,少数自旋团簇被对偶格子的边界所包围。随着温度升高,这些自旋团簇数量增多,并且发现当约13%的自旋为少数自旋时,它们的边界最终会发生渗流转变。边界渗流不同于更常研究的格点渗流和键渗流,尽管它与一种不寻常的格点渗流类型有关,这种类型包括次近邻关系。由于伊辛模型可以仅根据畴边界重新表述,所以有理由相信边界渗流在此处应该是相关的。在对偶理论即三维规范伊辛模型中发现了一个对称破缺序参量。可以看到它在一个耦合处发生相变,该耦合接近由对偶性从边界渗流预测的耦合。这个转变处于规范理论的无序相中,具有自旋玻璃转变的性质。其临界指数ν∼1.3被发现与渗流转变的有限尺寸偏移指数相匹配,进一步巩固了它们之间的联系。这预测了一个非常弱的比热奇点,指数α∼ -1.9。第三能量累积量以与预测指数和临界点都一致的方式很好地拟合了预期的非无穷大临界行为,表明存在真正的热相变。与随机边界渗流不同,伊辛边界渗流有两个不同的指数,一个与最大团簇标度相关,另一个与有限尺寸转变点偏移相关。这表明可能存在两个不同的关联长度。

相似文献

1
Possible new phase transition in the 3D Ising model associated with boundary percolation.
J Phys Condens Matter. 2023 Apr 21;35(28). doi: 10.1088/1361-648X/accbf8.
2
Cluster percolation in the two-dimensional Ising spin glass.
Phys Rev E. 2023 May;107(5-1):054103. doi: 10.1103/PhysRevE.107.054103.
3
Ising Model on Random Triangulations of the Disk: Phase Transition.
Commun Math Phys. 2023;397(2):793-873. doi: 10.1007/s00220-022-04508-5. Epub 2022 Dec 20.
4
Percolation of Fortuin-Kasteleyn clusters for the random-bond Ising model.
Phys Rev E. 2020 Jul;102(1-1):012131. doi: 10.1103/PhysRevE.102.012131.
5
Dynamical percolation transition in the two-dimensional ANNNI model.
J Phys Condens Matter. 2013 Apr 3;25(13):136002. doi: 10.1088/0953-8984/25/13/136002. Epub 2013 Mar 1.
6
Domain-size heterogeneity in the Ising model: Geometrical and thermal transitions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042113. doi: 10.1103/PhysRevE.91.042113. Epub 2015 Apr 13.
7
Dynamical percolation transition in the Ising model studied using a pulsed magnetic field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 1):021109. doi: 10.1103/PhysRevE.83.021109. Epub 2011 Feb 18.
8
Percolation effects in the Fortuin-Kasteleyn Ising model on the complete graph.
Phys Rev E. 2021 Jan;103(1-1):012102. doi: 10.1103/PhysRevE.103.012102.
9
Red-bond exponents of the critical and the tricritical Ising model in three dimensions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 2):056132. doi: 10.1103/PhysRevE.70.056132. Epub 2004 Nov 24.
10
Geometric clusters in the overlap of the Ising model.
Phys Rev E. 2023 Oct;108(4-1):044145. doi: 10.1103/PhysRevE.108.044145.

引用本文的文献

1
Lower Limit of Percolation Threshold on Square Lattice with Complex Neighborhoods.
Entropy (Basel). 2025 Mar 29;27(4):361. doi: 10.3390/e27040361.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验