Suppr超能文献

基于自注意力机制的单细胞测序数据去噪自适应深度聚类

Denoising adaptive deep clustering with self-attention mechanism on single-cell sequencing data.

作者信息

Su Yansen, Lin Rongxin, Wang Jing, Tan Dayu, Zheng Chunhou

机构信息

Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, 230601, China.

School of Computer Science and Technology, Anhui University, Hefei, 230601, China.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad021.

Abstract

A large number of works have presented the single-cell RNA sequencing (scRNA-seq) to study the diversity and biological functions of cells at the single-cell level. Clustering identifies unknown cell types, which is essential for downstream analysis of scRNA-seq samples. However, the high dimensionality, high noise and pervasive dropout rate of scRNA-seq samples have a significant challenge to the cluster analysis of scRNA-seq samples. Herein, we propose a new adaptive fuzzy clustering model based on the denoising autoencoder and self-attention mechanism called the scDASFK. It implements the comparative learning to integrate cell similar information into the clustering method and uses a deep denoising network module to denoise the data. scDASFK consists of a self-attention mechanism for further denoising where an adaptive clustering optimization function for iterative clustering is implemented. In order to make the denoised latent features better reflect the cell structure, we introduce a new adaptive feedback mechanism to supervise the denoising process through the clustering results. Experiments on 16 real scRNA-seq datasets show that scDASFK performs well in terms of clustering accuracy, scalability and stability. Overall, scDASFK is an effective clustering model with great potential for scRNA-seq samples analysis. Our scDASFK model codes are freely available at https://github.com/LRX2022/scDASFK.

摘要

大量研究工作已提出利用单细胞RNA测序(scRNA-seq)在单细胞水平研究细胞的多样性和生物学功能。聚类可识别未知细胞类型,这对scRNA-seq样本的下游分析至关重要。然而,scRNA-seq样本的高维度、高噪声和普遍的缺失率给scRNA-seq样本的聚类分析带来了重大挑战。在此,我们提出一种基于去噪自编码器和自注意力机制的新型自适应模糊聚类模型,称为scDASFK。它通过比较学习将细胞相似信息整合到聚类方法中,并使用深度去噪网络模块对数据进行去噪。scDASFK由一个用于进一步去噪的自注意力机制和一个用于迭代聚类的自适应聚类优化函数组成。为了使去噪后的潜在特征更好地反映细胞结构,我们引入了一种新的自适应反馈机制,通过聚类结果来监督去噪过程。在16个真实scRNA-seq数据集上的实验表明,scDASFK在聚类准确性、可扩展性和稳定性方面表现良好。总体而言,scDASFK是一种有效的聚类模型,在scRNA-seq样本分析方面具有巨大潜力。我们的scDASFK模型代码可在https://github.com/LRX2022/scDASFK上免费获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验