Department of Otorhinolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
Chemphyschem. 2023 May 2;24(9):e202200766. doi: 10.1002/cphc.202200766. Epub 2023 Jan 30.
Integrating ferromagnetism (FM) and photoluminescence (PL) into one particular nanostructure as biological probe plays an irreplaceable role in accurate clinical diagnosis combining magnetic resonance and photoluminescence imaging technology. However, magnetic emergence generally needs a spin polarization at Fermi level to display a half-metallic electronic feature, which is not beneficial for preserving radiation recombination ability of photo-excited electron-hole carriers. To overcome this intrinsic difficulty, we propose a feasible atomic-hybridization strategy to anchor carbon quantum dots (CQDs) onto ZnO microsphere surface via breakage of C=O bonds at CQDs and subsequent Zn-3d and C-2p orbital hybridization, which not only ensures the carrier recombination but also leads to a room-temperature magnetism. Herein, the photoluminescence and magnetism coexist in this multifunctional heterojunction with outstanding biocompatibility. This work suggests that integration of magnetism and photoluminescence could be accomplished by particular interfacial orbital hybridization.
将铁磁性 (FM) 和光致发光 (PL) 集成到一个特殊的纳米结构中作为生物探针,在将磁共振和光致发光成像技术结合进行准确的临床诊断中发挥着不可替代的作用。然而,磁出现通常需要费米能级的自旋极化才能显示出半金属电子特性,这不利于保持光激发电子-空穴载流子的辐射复合能力。为了克服这一内在困难,我们提出了一种可行的原子杂化策略,通过在 CQDs 上打破 C=O 键,并随后进行 Zn-3d 和 C-2p 轨道杂化,将 CQDs 锚定在 ZnO 微球表面,这不仅确保了载流子的复合,而且导致了室温磁性。在这里,这种多功能异质结具有优异的生物相容性,光致发光和磁性共存。这项工作表明,通过特定的界面轨道杂化可以实现磁性和光致发光的集成。