Shi Zijun, Xu Xuan, Jing Peng, Liu Baocang, Zhang Jun
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, P. R. China.
Inner Mongolia Academy of Science and Technology, 70 Zhaowuda Road, Hohhot010010, P. R. China.
ACS Appl Mater Interfaces. 2023 Feb 8;15(5):7263-7273. doi: 10.1021/acsami.2c18237. Epub 2023 Jan 30.
A class of electrode materials with favorable structures and compositions and powerful electrochemical (EC) properties are needed to boost the supercapacitor capacity significantly. In this study, an inventive technique was established to produce a well-aligned nickel-cobalt alloy nanoparticles-encapsulated N-doped carbon nanotubes with porous structure and good conductivity on carbon cloth (NiCo@NCNTs/CC) as a substrate. Then, nanosheets of nickel-cobalt layered double hydroxide (NiCo-LDH) were grown on NiCo@NCNTs/CC via a simple EC deposition method to construct a self-supported monolithic hierarchical nanosheets/nanotubes composite electrode of NiCo-LDH/NiCo@NCNTs/CC. In such a composite electrode, the NiCo@NCNTs can act as a good conductor and structural scaffold to grow NiCo-LDH nanosheets with a three-dimensional open and porous structure, which helps to improve the electron/ion-transfer performance, increase the number of exposed reactive sites, and inhibit the aggregation of NiCo-LDH nanosheets, thereby boosting the capacitance and stability. As a positive electrode, the NiCo-LDH/NiCo@NCNTs/CC hierarchical nanosheets/nanotubes electrode displays 1898 mF cm (1262 A g) of high capacitance, long-term stability with a capacitance retention of around 100% after 8000 cycles, and nearly 103% Coulombic efficiency. After assembling into an asymmetric supercapacitor with a Co(OH)/NiCo@NCNTs/CC negative electrode, 2 V of operating voltage with 73.1 μW h cm (52.8 W h kg) of energy density was achieved. Our investigation gives a potential approach for constructing the integrated composite electrode of transition-metal compounds-carbon materials for high-performance supercapacitors.
为了显著提高超级电容器的容量,需要一类具有良好结构和组成以及强大电化学(EC)性能的电极材料。在本研究中,建立了一种创新技术,以碳布(NiCo@NCNTs/CC)为基底制备具有多孔结构和良好导电性的排列整齐的镍钴合金纳米颗粒封装的氮掺杂碳纳米管。然后,通过简单的电化学沉积方法在NiCo@NCNTs/CC上生长镍钴层状双氢氧化物(NiCo-LDH)纳米片,以构建自支撑的整体分层纳米片/纳米管复合电极NiCo-LDH/NiCo@NCNTs/CC。在这种复合电极中,NiCo@NCNTs可以作为良好的导体和结构支架,用于生长具有三维开放多孔结构的NiCo-LDH纳米片,这有助于提高电子/离子转移性能,增加暴露的反应位点数量,并抑制NiCo-LDH纳米片的聚集,从而提高电容和稳定性。作为正极,NiCo-LDH/NiCo@NCNTs/CC分层纳米片/纳米管电极显示出1898 mF cm(1262 A g)的高电容、长期稳定性,在8000次循环后电容保持率约为100%,库仑效率接近103%。在与Co(OH)/NiCo@NCNTs/CC负极组装成不对称超级电容器后,实现了2 V的工作电压,能量密度为73.1 μW h cm(52.8 W h kg)。我们的研究为构建用于高性能超级电容器的过渡金属化合物-碳材料集成复合电极提供了一种潜在方法。