School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China.
Department of Materials Science and Engineering, National University of Singapore, 117575Singapore, Singapore.
ACS Nano. 2023 Feb 14;17(3):2450-2459. doi: 10.1021/acsnano.2c09762. Epub 2023 Jan 30.
Self-intercalation of native magnetic atoms within the van der Waals (vdW) gap of layered two-dimensional (2D) materials provides a degree of freedom to manipulate magnetism in low-dimensional systems. Among various vdW magnets, the vanadium telluride is an interesting system to explore the interlayer order-disorder transition of magnetic impurities due to its flexibility in taking nonstoichiometric compositions. In this work, we combine high-resolution scanning transmission electron microscopy (STEM) analysis with density functional theory (DFT) calculations and magnetometry measurements, to unveil the local atomic structure and magnetic behavior of V-rich VTe nanoplates with embedded VTe nanoclusters grown by chemical vapor deposition (CVD). The segregation of V intercalations locally stabilizes the self-intercalated VTe magnetic phase, which possesses a distorted 1T'-like monoclinic structure. This phase transition is controlled by the electron doping from the intercalant V ions. The magnetic hysteresis loops show that the nanoplates exhibit superparamagnetism, while the temperature-dependent magnetization curves evidence a collective superspin-glass magnetic behavior of the nanoclusters at low temperature. Using four-dimensional (4D) STEM diffraction imaging, we reveal the formation of collective diffuse magnetic domain structures within the sample under the high magnetic fields inside the electron microscope. Our results shed light on the studies of dilute magnetism at the 2D limit and on strategies for the manipulation of magnetism for spintronic applications.
本征磁原子在层状二维(2D)材料范德华(vdW)间隙中的自嵌入为在低维系统中操控磁性提供了自由度。在各种 vdW 磁体中,由于其在采取非化学计量组成方面的灵活性,钒碲化物是一个有趣的系统,可以探索磁性杂质的层间有序-无序转变。在这项工作中,我们结合高分辨率扫描透射电子显微镜(STEM)分析、密度泛函理论(DFT)计算和磁测量,揭示了通过化学气相沉积(CVD)生长的嵌入 VTe 纳米团簇的富 V VTe 纳米板的局部原子结构和磁性行为。V 插层的偏析局部稳定了自嵌入 VTe 磁性相,其具有扭曲的 1T'类似单斜结构。这种相变受插层 V 离子的电子掺杂控制。磁滞回线表明纳米板表现出超顺磁性,而低温下的温度依赖性磁化曲线证明了纳米团簇的集体超自旋玻璃磁行为。通过四维(4D)STEM 衍射成像,我们揭示了在电子显微镜内的高磁场下,样品内集体弥散磁畴结构的形成。我们的结果为在 2D 极限下研究稀磁体以及为自旋电子学应用操控磁性的策略提供了思路。