Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, 220006 Minsk, Belarus.
Nikolaev Institute of Inorganic Chemistry, SB RAS, Acad. Lavrentieva Ave. 3, 630090 Novosibirsk, Russia.
Nanotechnology. 2023 Feb 15;34(18). doi: 10.1088/1361-6528/acb712.
We propose an original technique for the grating metasurfaces fabrication by low-power ultraviolet laser treatment of fluorinated graphene (FG) films with the focus on terahertz applications. The laser treatment reduces dielectric FG to its conductive counterparts, increasing DC conductivity to 170 S·mfor treated areas. The electromagnetic response of the grating metasurfaces studied by THz time-domain spectroscopy in the 100 GHz-1 THz frequency range demonstrates enhanced resonant transmittance through metasurfaces. The intensity and position of transmittance peak could be tuned by changing the metasurface geometry, i.e. the period of the structure and width of the reduced and unreduced areas. In particular, the decrease of the reduced FG area width from 400 to 170m leads to the shift of the resonance peak from 0.45 THz to the higher frequencies, 0.85 THz. Theoretical description based on the multipole theory supported by finite element numerical calculations confirms the excitation of the dark state in the metasurface unit cells comprising reduced and unreduced FG areas at resonance frequency determined by the structure geometrical features. Fabricated metasurfaces have been proved to be efficient narrowband polarizers being rotated by 50° about the incident THz field vector.
我们提出了一种通过低功率紫外激光处理氟化石墨烯 (FG) 薄膜来制造光栅超表面的原始技术,重点是太赫兹应用。激光处理将介电 FG 降低到其导电对应物,将直流电导率提高到 170 S·m 用于处理区域。太赫兹时域光谱研究的光栅超表面的电磁响应在 100 GHz-1 THz 频率范围内证明了通过超表面增强的共振透过率。通过改变超表面的几何形状,即结构的周期和减小的和未减小的区域的宽度,可以调节透过率峰值的强度和位置。特别是,减小减小的 FG 区域宽度从 400 到 170m 导致共振峰从 0.45 THz 移动到较高的频率,0.85 THz。基于有限元数值计算支持的多极理论的理论描述证实了在共振频率下由结构几何特征确定的包含减小的和未减小的 FG 区域的超表面单元中的暗态的激发。制造的超表面已被证明是有效的窄带偏光器,可将太赫兹入射场矢量旋转 50°。