School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
J Colloid Interface Sci. 2023 May;637:465-476. doi: 10.1016/j.jcis.2023.01.118. Epub 2023 Jan 26.
Semiconductor photocatalytic water splitting is a green way to convert solar energy into chemical energy, but the recombination of electron and hole pairs and the low utilization of sunlight restrict the development of photocatalytic technology. By comparing the morphologies and hydrogen production properties of different proportions of solid solutions (CdZnS), one-dimensional (1D) CdZnS nanorods (NRs) with the best photocatalytic properties are obtained. In addition, 1D WO nanowires are assembled on the surface of 1D CdZnS NRs to construct a novel 1D/1D step-scheme (S-scheme) WO/CdZnS heterojunction photocatalyst. The WO/CdZnS heterojunction expands the optical absorption capacity of CdZnS NRs to provide more energy for the photoexcitation of electrons. The optimal hydrogen production rate of WO/CdZnS NRs with WO content of 9 wt% is as high as 66.3 mmol·h·g, which is 5.7 times and 1.6 times higher than that of CdZnS NRs and 1 wt% Pt/CdZnS NRs. The apparent quantum efficiency (AQE) of 9 wt% WO/CdZnS reaches 56.0 % and 25.9 % under light wavelength irradiation at 370 and 456 nm, respectively. After the 20 h cycle stability test, the activity of photocatalytic hydrogen evolution does not decrease, due that the severe photo-corrosion of CdZnS NRs is efficiently inhibited. This work not only provides a simple and controllable synthesis method for the preparation of heterojunction structure, but also opens up a new way to improve the hydrogen evolution activity and stability of sulfur compounds.
半导体光催化水分解是一种将太阳能转化为化学能的绿色方法,但电子和空穴对的复合以及太阳光的低利用率限制了光催化技术的发展。通过比较不同比例固溶体(CdZnS)的形貌和产氢性能,得到了具有最佳光催化性能的一维(1D)CdZnS 纳米棒(NRs)。此外,在 1D CdZnS NRs 表面组装一维 WO 纳米线,构建了一种新型的 1D/1D 阶跃式(S 型)WO/CdZnS 异质结光催化剂。WO/CdZnS 异质结扩展了 CdZnS NRs 的光吸收能力,为电子的光激发提供了更多的能量。WO 含量为 9wt%的 WO/CdZnS NRs 的最佳产氢速率高达 66.3mmol·h·g,分别是 CdZnS NRs 和 1wt%Pt/CdZnS NRs 的 5.7 倍和 1.6 倍。在 370nm 和 456nm 光波长照射下,9wt%WO/CdZnS 的表观量子效率(AQE)分别达到 56.0%和 25.9%。经过 20h 的循环稳定性测试,光催化析氢活性没有降低,因为 CdZnS NRs 的严重光腐蚀得到了有效抑制。这项工作不仅为制备异质结结构提供了一种简单可控的合成方法,而且为提高硫化合物的析氢活性和稳定性开辟了新途径。