Deng Fu-Guo, Ren Bao-Cang, Li Xi-Han
Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China.
Department of Physics, Capital Normal University, Beijing 100048, China.
Sci Bull (Beijing). 2017 Jan 15;62(1):46-68. doi: 10.1016/j.scib.2016.11.007. Epub 2016 Dec 2.
Hyperentanglement is a promising resource in quantum information processing with its high capacity character, defined as the entanglement in multiple degrees of freedom (DOFs) of a quantum system, such as polarization, spatial-mode, orbit-angular-momentum, time-bin and frequency DOFs of photons. Recently, hyperentanglement attracts much attention as all the multiple DOFs can be used to carry information in quantum information processing fully. In this review, we present an overview of the progress achieved so far in the field of hyperentanglement in photon systems and some of its important applications in quantum information processing, including hyperentanglement generation, complete hyperentangled-Bell-state analysis, hyperentanglement concentration, and hyperentanglement purification for high-capacity long-distance quantum communication. Also, a scheme for hyper-controlled-not gate is introduced for hyperparallel photonic quantum computation, which can perform two controlled-not gate operations on both the polarization and spatial-mode DOFs and depress the resources consumed and the photonic dissipation.
超纠缠作为一种具有高容量特性的量子信息处理资源,具有广阔前景。它被定义为量子系统多个自由度(DOF)中的纠缠,例如光子的偏振、空间模式、轨道角动量、时间-bin和频率自由度。最近,超纠缠备受关注,因为在量子信息处理中所有多个自由度都可被充分用于携带信息。在这篇综述中,我们概述了光子系统中超纠缠领域目前所取得的进展及其在量子信息处理中的一些重要应用,包括超纠缠生成、完全超纠缠贝尔态分析、超纠缠浓缩以及用于高容量长距离量子通信的超纠缠纯化。此外,还介绍了一种用于超并行光子量子计算的超控制非门方案,该方案可对偏振和空间模式自由度同时执行两个控制非门操作,并降低资源消耗和光子耗散。