Department of Biomedical Engineering, University of California, Davis One Shields Avenue, Davis, CA 95616.
Department of Orthopaedic Surgery, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, The Netherlands.
J Biomech Eng. 2023 Jun 1;145(6). doi: 10.1115/1.4056802.
Radiostereometric analysis can be used for computing movement of a tibial baseplate relative to the tibia (termed migration) to determine stability of fixation. Quantifying migration in six degrees of freedom requires establishing a coordinate system in which to express the movement. Establishing consistent migration directions among patients and baseplate designs remains challenging. Deviations in imaging alignment (tibia/baseplate alignment during image acquisition) and surgical alignment (baseplate alignment on tibia) will affect computed migrations when using the conventional globally-aligned baseplate coordinate system (BCS) (defined by calibration box). Computing migration using a local BCS (defined by baseplate) may be preferrable. This paper (1) summarizes the migration equations when using a globally-aligned versus local BCS, (2) proposes a method for defining a local BCS, and (3) demonstrates differences in the two BCSs for an example patient whose baseplate has rotational deviations due to imaging or surgical alignments. Differences in migration for the two BCSs ranged from about ±0.5 mm in translations and -0.4 deg to 0.7 deg in rotations. Differences were largest for deviations in internal-external rotation and smallest for deviations in varus-valgus rotation. An example demonstrated that the globally-aligned BCS resulted in migration being quantified as subsidence instead of liftoff, thereby changing fundamental interpretations. Because migrations computed using a local BCS are independent of imaging and surgical alignments and instead characterize migration using baseplate features, a local BCS enhances consistency in migration directions among patients and baseplate designs relative to the interface in which fixation may be compromised.
放射学立体定位分析可用于计算胫骨基板相对于胫骨的运动(称为迁移),以确定固定的稳定性。要确定六自由度的迁移,需要建立一个坐标系来表达运动。在患者和基板设计之间建立一致的迁移方向仍然具有挑战性。在使用传统的整体对准基板坐标系(由校准盒定义)时,成像对准(图像采集期间胫骨/基板对准)和手术对准(基板在胫骨上的对准)的偏差会影响计算的迁移。使用局部基板坐标系(由基板定义)计算迁移可能更可取。本文(1)总结了使用整体对准和局部 BCS 时的迁移方程,(2)提出了一种定义局部 BCS 的方法,(3)展示了一个基板因成像或手术对准而存在旋转偏差的示例患者的两种 BCS 之间的差异。两种 BCS 之间的迁移差异在平移时约为±0.5mm,在旋转时为-0.4°至 0.7°。内旋/外旋偏差的差异最大,内翻/外翻偏差的差异最小。一个示例表明,整体对准 BCS 导致迁移被量化为下沉而不是抬起,从而改变了基本解释。由于使用局部 BCS 计算的迁移与成像和手术对准无关,而是使用基板特征来描述迁移,因此与可能受损的固定界面相比,局部 BCS 增强了患者和基板设计之间迁移方向的一致性。