Burdis Ross, Kronemberger Gabriela S, Kelly Daniel J
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
Tissue Eng Part C Methods. 2023 Apr;29(4):121-133. doi: 10.1089/ten.TEC.2022.0181. Epub 2023 Mar 14.
Engineering clinically relevant musculoskeletal tissues at a human scale is a considerable challenge. Developmentally inspired scaffold-free approaches for engineering cartilage tissues have shown great promise in recent years, enabling the generation of highly biomimetic tissues. Despite the relative success of these approaches, the absence of a supporting scaffold or hydrogel creates challenges in the development of large-scale tissues. Combining numerous scaled-down tissue units (herein termed ) into a larger macrotissue represents a promising strategy to address this challenge. The overall success of such approaches, however, relies on the development of strategies which support the robust and consistent chondrogenic differentiation of clinically relevant cell sources such as mesenchymal stem/stromal cells (MSCs) within microwell arrays to biofabricate numerous microtissues rich in cartilage-specific extracellular matrix components. In this article, we first describe a simple method to manufacture cartilage microtissues at various scales using novel microwell array stamps. This system allows the rapid and reliable generation of cartilage microtissues and can be used as a platform to study microtissue phenotype and development. Based on the unexpected discovery that Endothelial Growth Medium (EGM) enhanced MSC aggregation and chondrogenic capacity within the microwell arrays, this work also sought to identify soluble factors within the media capable of supporting robust differentiation using heterogeneous MSC populations. Hydrocortisone was found to be the key factor within EGM that enhanced the chondrogenic capacity of MSCs within these microwell arrays. This strategy represents a promising means of generating large numbers of high-quality, scaffold-free cartilage microtissues for diverse biofabrication applications. Impact statement This study addresses a key challenge facing emerging modular biofabrication strategies that use microtissues as biological building blocks. Namely, achieving the necessary robust and consistent differentiation of clinically relevant cell sources, for example, mesenchymal stem/stromal cells (MSCs), and the accumulation of sufficient tissue-specific extracellular matrix (ECM) to engineer tissue of scale. We achieved this by establishing hydrocortisone as a simple and potent method for improving MSC chondrogenesis, resulting in the biofabrication of high-quality (ECM rich) cartilage microtissues. These findings could enable the generation of more scalable engineered cartilage by ensuring the formation of high-quality microtissue building blocks generated using heterogeneous MSC populations.
在人体尺度上构建具有临床相关性的肌肉骨骼组织是一项巨大的挑战。近年来,受发育启发的无支架软骨组织工程方法显示出了巨大的潜力,能够生成高度仿生的组织。尽管这些方法取得了相对成功,但缺乏支撑支架或水凝胶给大规模组织的发育带来了挑战。将大量缩小尺寸的组织单元(本文称为 )组合成更大的宏观组织是应对这一挑战的一种有前途的策略。然而,此类方法的总体成功依赖于开发能够支持临床相关细胞来源(如间充质干/基质细胞 (MSC))在微孔阵列中进行强大且一致的软骨生成分化的策略,以生物制造大量富含软骨特异性细胞外基质成分的微组织。在本文中,我们首先描述了一种使用新型微孔阵列印章制造各种尺度软骨微组织的简单方法。该系统能够快速可靠地生成软骨微组织,并可作为研究微组织表型和发育的平台。基于意外发现内皮生长培养基 (EGM) 可增强微孔阵列内 MSC 的聚集和软骨生成能力,这项工作还试图确定培养基中能够支持使用异质 MSC 群体进行强大分化的可溶性因子。发现氢化可的松是 EGM 中增强这些微孔阵列内 MSC 软骨生成能力的关键因子。这种策略是为各种生物制造应用生成大量高质量、无支架软骨微组织的一种有前途的方法。影响声明 本研究解决了新兴的模块化生物制造策略面临的一个关键挑战,该策略使用微组织作为生物构建块。即,实现临床相关细胞来源(例如间充质干/基质细胞 (MSC))必要的强大且一致的分化,以及积累足够的组织特异性细胞外基质 (ECM) 以构建规模化组织。我们通过将氢化可的松确立为一种简单有效的改善 MSC 软骨生成的方法来实现这一目标,从而生物制造出高质量(富含 ECM)的软骨微组织构件。这些发现通过确保使用异质 MSC 群体生成高质量微组织构件,能够实现更具可扩展性的工程软骨生成。