Suppr超能文献

使用粒子群优化算法对阿尔茨海默病神经影像数据进行分类:一项系统综述。

Classification of neuroimaging data in Alzheimer's disease using particle swarm optimization: A systematic review.

作者信息

Dar Suhail Ahmad, Imtiaz Nasheed

机构信息

Department of Psychology, Aligarh Muslim University, Aligarh, India.

出版信息

Appl Neuropsychol Adult. 2025 Mar-Apr;32(2):545-556. doi: 10.1080/23279095.2023.2169886. Epub 2023 Jan 31.

Abstract

AIM

Particle swarm optimization (PSO) is an algorithm that involves the optimization of Non-linear and Multidimensional problems to reach the best solutions with minimal parameterization. This metaheuristic model has frequently been used in the Pathological domain. This optimization model has been used in diverse forms while predicting Alzheimer's disease. It is a robust algorithm that works on linear and multi-modal data while predicting Alzheimer's disease. PSO techniques have been in action for quite some time for detecting various diseases and this paper systematically reviews the papers on various kinds of PSO techniques.

METHODS

To perform the systematic review, PRISMA guidelines were followed and a Boolean search ("particle swarm optimization" OR "PSO") AND Neuroimaging AND (Alzheimer's disease prediction OR classification OR diagnosis) were performed. The query was run in 4-reputed databases: Google Scholar, Scopus, Science Direct, and Wiley publications.

RESULTS

For the final analysis, 10 papers were incorporated for qualitative and quantitative synthesis. PSO has shown a dominant character while handling the uni-modal as well as the multi-modal data while predicting the conversion from MCI to Alzheimer's. It can be seen from the table that almost all the 10 reviewed papers had MRI-driven data. The accuracy rate was accentuated while adding other modalities or Neurocognitive measures.

CONCLUSIONS

Through this algorithm, we are providing an opportunity to other researchers to compare this algorithm with other state-of-the-art algorithms, while seeing the classification accuracy, with the aim of early prediction and progression of MCI into Alzheimer's disease.

摘要

目的

粒子群优化算法(PSO)是一种用于优化非线性和多维问题以通过最少参数化获得最优解的算法。这种元启发式模型在病理学领域经常被使用。在预测阿尔茨海默病时,这种优化模型有多种应用形式。它是一种强大的算法,在预测阿尔茨海默病时可处理线性和多模态数据。粒子群优化技术在检测各种疾病方面已经应用了相当长的时间,本文系统地综述了关于各种粒子群优化技术的论文。

方法

为进行系统综述,遵循PRISMA指南,进行了布尔搜索(“粒子群优化”或“PSO”)与神经影像学以及(阿尔茨海默病预测或分类或诊断)。该查询在4个著名数据库中运行:谷歌学术、Scopus、科学Direct和Wiley出版物。

结果

最终分析纳入了10篇论文进行定性和定量综合。在预测从轻度认知障碍(MCI)向阿尔茨海默病的转化时处理单模态和多模态数据方面,粒子群优化算法表现出显著优势。从表格中可以看出,几乎所有10篇综述论文都有MRI驱动的数据。在添加其他模态或神经认知测量时,准确率得到了提高。

结论

通过这种算法,我们为其他研究人员提供了一个机会,将该算法与其他最先进的算法进行比较,同时观察分类准确率,目的是早期预测MCI向阿尔茨海默病的进展情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验