Suppr超能文献

基于新型沙猫群优化算法的支持向量机在阿尔茨海默病诊断成像基因组学中的应用。

A novel sand cat swarm optimization algorithm-based SVM for diagnosis imaging genomics in Alzheimer's disease.

机构信息

School of Computer Science and Technology, Hangzhou Dianzi University, 1158 2nd Street, Hangzhou, Zhejiang 310018, China.

Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, 215 6th Street, Hangzhou, Zhejiang 310018, China.

出版信息

Cereb Cortex. 2024 Aug 1;34(8). doi: 10.1093/cercor/bhae329.

Abstract

In recent years, brain imaging genomics has advanced significantly in revealing underlying pathological mechanisms of Alzheimer's disease (AD) and providing early diagnosis. In this paper, we present a framework for diagnosing AD that integrates magnetic resonance imaging (fMRI) genetic preprocessing, feature selection, and a support vector machine (SVM) model. In particular, a novel sand cat swarm optimization (SCSO) algorithm, named SS-SCSO, which integrates the spiral search strategy and alert mechanism from the sparrow search algorithm, is proposed to optimize the SVM parameters. The optimization efficacy of the SS-SCSO algorithm is evaluated using CEC2017 benchmark functions, with results compared with other metaheuristic algorithms (MAs). The proposed SS-SCSO-SVM framework has been effectively employed to classify different stages of cognitive impairment in Alzheimer's Disease using imaging genetic datasets from the Alzheimer's Disease Neuroimaging Initiative. It has demonstrated excellent classification accuracies for four typical cases, including AD, early mild cognitive impairment, late mild cognitive impairment, and healthy control. Furthermore, experiment results indicate that the SS-SCSO-SVM algorithm has a stronger exploration capability for diagnosing AD compared to other well-established MAs and machine learning techniques.

摘要

近年来,脑影像基因组学在揭示阿尔茨海默病(AD)的潜在病理机制和提供早期诊断方面取得了显著进展。在本文中,我们提出了一个将磁共振成像(fMRI)遗传预处理、特征选择和支持向量机(SVM)模型集成在一起的 AD 诊断框架。特别是,我们提出了一种名为 SS-SCSO 的新型沙猫群优化(SCSO)算法,该算法集成了麻雀搜索算法中的螺旋搜索策略和警报机制,用于优化 SVM 参数。通过使用 CEC2017 基准函数评估 SS-SCSO 算法的优化效果,并与其他元启发式算法(MAs)进行比较。该框架已成功应用于使用来自阿尔茨海默病神经影像学倡议的成像遗传数据集对 AD 的不同认知障碍阶段进行分类。它对四个典型案例(AD、早期轻度认知障碍、晚期轻度认知障碍和健康对照组)的分类准确率都很高。此外,实验结果表明,与其他成熟的 MAs 和机器学习技术相比,SS-SCSO-SVM 算法在 AD 诊断方面具有更强的探索能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验