Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37077 Göttingen, Germany.
Acc Chem Res. 2023 Mar 21;56(6):625-630. doi: 10.1021/acs.accounts.2c00739. Epub 2023 Jan 31.
ConspectusIn this brief look at the history of liquid microjets, I recollect some personal reminiscences on initial challenges for introduction of this method, as well as unexpected problems and exemplary results using this new tool for liquid evaporation and photoelectron spectroscopy studies.Many efficient and direct, atomic level diagnostic instruments in use at solid state surfaces and in gas-phase atom or cluster studies require high vacuum. They have therefore not been applied to investigations of aqueous solutions because liquid water both strongly evaporates and rapidly freezes in vacuum. Only fairly recently, over the past three decades, have liquid microjets been considered as practicable targets for research on liquid-water interfaces in vacuum. The working principle is analogous to the functioning of a free molecular beam source, where molecules enter through a small aperture into a vacuum without being disturbed by subsequent collisions in their original Maxwellian velocity distribution. Similarly, above a microjet surface in vacuum, water vapor molecules do not interact with each other, or with different probe particles, as long as the liquid jet diameter is small in relation to the mean free path of the liquids' vapor at equilibrium conditions. For pure liquid water, this constraint is < λ < 10 μm for 6.1 mbar vapor pressure at the triple point of water. A high streaming velocity of the liquid jet, >50 m/s, delays freezing and exposes a steadily renewed fresh vacuum surface for experiments.For experimental verification of the microjet free surface concept, HO vapor velocities were measured in a molecular beam time-of-flight experiment. These studies showed Maxwellian velocity distributions with the expected local water-jet temperatures for 5 and 10 μm jets, whereas larger liquid jet diameters of 50 μm exhibit narrowed vapor velocity profiles. This narrowing is the known signature of incipient, collision dominated, supersonic hydrodynamic expansions in nozzle beam sources. As a completely unexpected new result in evaporation studies of carboxylic acid solutions, freely evaporating acetic acid dimers showed apparent non-equilibrium liquid surface source temperatures several hundred kelvin above the simultaneously measured monomer temperatures, a phenomenon shown to be correlated with surface tension.Continuing with improvements, the vacuum water microjets were implemented inside a photoelectron spectroscopy apparatus that was modified for handling large amounts of water vapor. After initial complications with liquid jet charging phenomena, the first partial liquid-water photoelectron spectra were recorded using 21 eV photons from a He I discharge lamp. In the next step, the equipment was taken to a synchrotron radiation beamline at BESSY II, resulting in substantial improvements of signal intensity and in photon tunability for narrow band monochromatic soft X-rays up to 1 keV. Two early examples of these continuing experiments are considered, briefly, for aqueous alkali halide salt solutions and for the pH-value dependent protonation of an NH/NH group in an amino acid directly in a photoelectron spectrum of a solution.In conclusion, liquid microjets have opened up a completely new approach to studies of arbitrary liquids with chemical and biological relevance.
概述在简要回顾液体微射流的历史时,我回忆了一些关于该方法引入时的初步挑战的个人回忆,以及使用这种新工具进行液体蒸发和光电子能谱研究时出现的意外问题和典型结果。许多在固态表面和气相原子或团簇研究中使用的高效、直接的原子级诊断仪器都需要高真空。因此,它们不适用于对水溶液的研究,因为液态水在真空中强烈蒸发并且迅速冻结。直到最近,在过去的三十年中,液体微射流才被认为是研究真空中水界面的可行目标。工作原理类似于自由分子束源的工作原理,其中分子通过小孔进入真空,而不会受到原始麦克斯韦速度分布中后续碰撞的干扰。同样,在真空下的微射流表面上方,只要液体射流直径相对于平衡条件下液体蒸气的平均自由程小,水蒸气分子就不会相互作用,也不会与不同的探针粒子相互作用。对于纯水,此约束条件为<λ<10μm,对于水的三相点处 6.1 mbar 的蒸气压。液体射流的高速射流,>50 m/s,可以延迟冻结并为实验提供不断更新的新鲜真空表面。为了实验验证微射流自由表面的概念,在分子束飞行时间实验中测量了 HO 蒸气速度。这些研究表明,对于 5 和 10μm 的射流,具有预期的局部水射流温度的麦克斯韦速度分布,而直径为 50μm 的较大液体射流则表现出较窄的蒸气速度分布。这种变窄是喷嘴束源中初始的、碰撞主导的超音速流体动力学膨胀的已知特征。作为羧酸溶液蒸发研究中完全出乎意料的新结果,自由蒸发的乙酸二聚体显示出明显的非平衡液体表面源温度,比同时测量的单体温度高几百开尔文,这种现象与表面张力有关。随着改进的继续,真空水微射流被实施在光电子能谱设备中,该设备经过修改可用于处理大量水蒸气。在最初涉及液体射流充电现象的复杂情况之后,使用来自 He I 放电灯的 21 eV 光子记录了第一个部分液态水光电子光谱。下一步,该设备被带到 BESSY II 的同步辐射光束线上,从而大大提高了信号强度,并实现了窄带单色软 X 射线(高达 1 keV)的光子可调谐性。考虑了这些持续实验的两个早期示例,简要介绍了水溶液中碱金属卤化物盐溶液以及直接在溶液光电子光谱中氨基酸中 NH/NH 基团的 pH 值依赖性质子化的情况。总之,液体微射流为研究具有化学和生物学相关性的任意液体开辟了一条全新的途径。