Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Faisalabad, Punjab, Pakistan; Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA; Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan.
Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Faisalabad, Punjab, Pakistan.
Environ Pollut. 2023 Apr 1;322:121137. doi: 10.1016/j.envpol.2023.121137. Epub 2023 Jan 28.
Cerium (Ce) and cerium oxide nanoparticles (CeO-NPs) have diversified reported effects on plants. Once dispersed in the environment their fate is not well understood, especially in co-existence with other pollutants like cadmium (Cd). The effect of co-application of Ce and Cd are reported in various studies, but the role of Ce source (ionic or bulk) and nanoparticle size is still unknown in cereal plants like maize (Zea mays). To better understand the synergistic effects of Ce and Cd, 500 mg kg Ce coming from ionic (Ce as CeSO) and CeO nano sources (10 nm, 50 nm, and 100 nm) alone and in combination with 0.5 mg Cd kg sand were applied to maize seedlings. Growth, physiology, root structure, anatomy, and ionic homeostasis in maize were measured. The results revealed that Ce resulted in overall decrease in seedling growth, biomass and resulted in higher heavy metal (in control sets) and Cd (in Cd spiked sets) uptake in maize seedlings' root and shoot. The effects of CeO-NPs were found to be dependent on particle size; in fact, under Cd-0 (non-Cd spiked sets) CeO-100 nm showed beneficial effects compared to the control. While under co-application with Cd, CeO-50 nm showed net beneficial effects on maize seedling growth parameters. The Ce alone, and in combination with Cd, altered the root suberin barrier formation. Both ionic and nano Ce sources alone and in co-existence with Cd behaved differently for tissue elemental concentrations (Ce, Cd, micronutrients like B, Mn, Ni, Cu, Zn, Mo, Fe and elements Co, Si) suggesting a strong influence of Cd-Ce coexistence on the element's uptake and translocation in maize.
铈(Ce)和氧化铈纳米颗粒(CeO-NPs)在植物中具有多样化的报道效应。一旦分散在环境中,它们的命运就不太清楚,特别是与其他污染物如镉(Cd)共存时。在各种研究中都报道了 Ce 和 Cd 共同应用的效果,但在玉米(Zea mays)等谷类作物中,Ce 源(离子或块状)和纳米颗粒尺寸的作用仍然未知。为了更好地理解 Ce 和 Cd 的协同效应,将来自离子(Ce 作为 CeSO)和 CeO 纳米源(10nm、50nm 和 100nm)的 500mgkg 的 Ce 单独以及与 0.5mgCdkg 砂结合应用于玉米幼苗。测量了玉米幼苗的生长、生理、根系结构、解剖结构和离子内稳性。结果表明,Ce 导致幼苗生长、生物量总体下降,并导致玉米幼苗根和茎中重金属(在对照中)和 Cd(在 Cd 加标中)的吸收增加。CeO-NPs 的作用被发现取决于颗粒尺寸;实际上,在非 Cd 加标(Cd-0)条件下,CeO-100nm 与对照相比表现出有益的效果。而在与 Cd 共同应用时,CeO-50nm 对玉米幼苗生长参数表现出净有益效果。Ce 单独以及与 Cd 共同作用,改变了根栓质屏障的形成。离子和纳米 Ce 源单独以及与 Cd 共存时,组织元素浓度(Ce、Cd、B、Mn、Ni、Cu、Zn、Mo、Fe 和 Co、Si 等微量元素)的行为不同,这表明 Cd-Ce 共存对玉米中元素的吸收和转运有强烈影响。