Suppr超能文献

用于高精度深层组织光遗传学的稳健可调动态散射补偿。

Robust and adjustable dynamic scattering compensation for high-precision deep tissue optogenetics.

机构信息

State Key Laboratory of Modern Optical Instrumentation, Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.

出版信息

Commun Biol. 2023 Jan 31;6(1):128. doi: 10.1038/s42003-023-04487-w.

Abstract

The development of high-precision optogenetics in deep tissue is limited due to the strong optical scattering induced by biological tissue. Although various wavefront shaping techniques have been developed to compensate the scattering, it is still a challenge to non-invasively characterize the dynamic scattered optical wavefront inside the living tissue. Here, we present a non-invasive scattering compensation system with fast multidither coherent optical adaptive technique (fCOAT), which allows the rapid wavefront correction and stable focusing in dynamic scattering medium. We achieve subcellular-resolution focusing through 500-μm-thickness brain slices, or even three pieces overlapped mouse skulls after just one iteration with a 589 nm CW laser. Further, focusing through dynamic scattering medium such as live rat ear is also successfully achieved. The formed focus can maintain longer than 60 s, which satisfies the requirements of stable optogenetics manipulation. Moreover, the focus size is adjustable from subcellular level to tens of microns to freely match the various manipulation targets. With the specially designed fCOAT system, we successfully achieve single-cellular optogenetic manipulation through the brain tissue, with a stimulation efficiency enhancement up to 300% compared with that of the speckle.

摘要

由于生物组织引起的强光学散射,高精度光遗传学在深部组织中的发展受到限制。尽管已经开发了各种波前整形技术来补偿散射,但在活体组织内非侵入式地对动态散射光波前进行特征描述仍然是一个挑战。在这里,我们提出了一种具有快速多维相移相干光自适应技术(fCOAT)的非侵入式散射补偿系统,该系统允许在动态散射介质中快速进行波前校正和稳定聚焦。我们通过 589nm 连续波激光进行一次迭代,就能在 500μm 厚的脑切片甚至三块重叠的小鼠颅骨中实现亚细胞分辨率的聚焦。此外,还成功地通过活体老鼠耳朵等动态散射介质实现了聚焦。形成的焦点可以持续超过 60 秒,满足稳定光遗传学操作的要求。此外,焦点大小可以从亚细胞水平调节到数十微米,以自由匹配各种操作目标。使用专门设计的 fCOAT 系统,我们成功地通过脑组织实现了单细胞光遗传学操作,与散斑相比,刺激效率提高了 300%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce5a/9889738/4581a3779eec/42003_2023_4487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验