Suppr超能文献

机器学习在摩擦学中的最新进展与应用综述。

A review of recent advances and applications of machine learning in tribology.

作者信息

Sose Abhishek T, Joshi Soumil Y, Kunche Lakshmi Kumar, Wang Fangxi, Deshmukh Sanket A

机构信息

Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Phys Chem Chem Phys. 2023 Feb 8;25(6):4408-4443. doi: 10.1039/d2cp03692d.

Abstract

In tribology, a considerable number of computational and experimental approaches to understand the interfacial characteristics of material surfaces in motion and tribological behaviors of materials have been considered to date. Despite being useful in providing important insights on the tribological properties of a system, at different length scales, a vast amount of data generated from these state-of-the-art techniques remains underutilized due to lack of analysis methods or limitations of existing analysis techniques. In principle, this data can be used to address intractable tribological problems including structure-property relationships in tribological systems and efficient lubricant design in a cost and time effective manner with the aid of machine learning. Specifically, data-driven machine learning methods have shown potential in unraveling complicated processes through the development of structure-property/functionality relationships based on the collected data. For example, neural networks are incredibly effective in modeling non-linear correlations and identifying primary hidden patterns associated with these phenomena. Here we present several exemplary studies that have demonstrated the proficiency of machine learning in understanding these critical factors. A successful implementation of neural networks, supervised, and stochastic learning approaches in identifying structure-property relationships have shed light on how machine learning may be used in certain tribological applications. Moreover, ranging from the design of lubricants, composites, and experimental processes to studying fretting wear and frictional mechanism, machine learning has been embraced either independently or integrated with optimization algorithms by scientists to study tribology. Accordingly, this review aims at providing a perspective on the recent advances in the applications of machine learning in tribology. The review on referenced simulation approaches and subsequent applications of machine learning in experimental and computational tribology shall motivate researchers to introduce the revolutionary approach of machine learning in efficiently studying tribology.

摘要

在摩擦学领域,迄今为止,已经考虑了大量用于理解运动中材料表面的界面特性和材料摩擦学行为的计算和实验方法。尽管这些方法有助于在不同长度尺度上深入了解系统的摩擦学特性,但由于缺乏分析方法或现有分析技术的局限性,这些先进技术产生的大量数据仍未得到充分利用。原则上,借助机器学习,这些数据可用于解决棘手的摩擦学问题,包括摩擦学系统中的结构-性能关系和高效润滑剂设计,且成本低、耗时少。具体而言,数据驱动的机器学习方法已显示出通过基于收集的数据建立结构-性能/功能关系来揭示复杂过程的潜力。例如,神经网络在对非线性相关性进行建模以及识别与这些现象相关的主要隐藏模式方面非常有效。在此,我们展示了几项示例性研究,这些研究证明了机器学习在理解这些关键因素方面的能力。神经网络、监督学习和随机学习方法在识别结构-性能关系方面的成功应用,为机器学习在某些摩擦学应用中的使用方式提供了启示。此外,从润滑剂、复合材料和实验过程的设计到微动磨损和摩擦机制的研究,科学家们已单独或与优化算法相结合地采用机器学习来研究摩擦学。因此,本综述旨在提供关于机器学习在摩擦学应用中最新进展的观点。对参考模拟方法以及机器学习随后在实验和计算摩擦学中的应用进行综述,将激励研究人员引入机器学习这一革命性方法来高效研究摩擦学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验