Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824, USA.
Roche Tissue Diagnostics, 1910 E Innovation Park Dr, Oro Valley, AZ, 85755, USA.
Analyst. 2023 Feb 27;148(5):1085-1092. doi: 10.1039/d2an01395a.
Cysteine-based Michael addition is a widely employed strategy for covalent conjugation of proteins, peptides, and drugs. The covalent reaction is irreversible in most cases, leading to a lack of control over the process. Utilizing spectroscopic analyses along with X-ray crystallographic studies, we demonstrate Michael addition of an engineered cysteine residue in human Cellular Retinol Binding Protein II (hCRBPII) with a coumarin analog that creates a non-fluorescent complex. UV-illumination reverses the conjugation, yielding a fluorescent species, presumably through a -Michael process. This series of events can be repeated between a bound and non-bound form of the cysteine reversibly, resulting in the ON-OFF control of fluorescence. The details of the mechanism of photoswitching was illuminated by recapitulation of the process in light irradiated single crystals, confirming the mechanism at atomic resolution.
基于半胱氨酸的迈克尔加成反应是一种广泛应用于蛋白质、肽和药物的共价偶联策略。在大多数情况下,该共价反应是不可逆的,导致对该过程缺乏控制。我们利用光谱分析和 X 射线晶体学研究,证明了一种在人细胞视黄醇结合蛋白 II (hCRBPII)中引入的工程半胱氨酸残基与香豆素类似物的迈克尔加成反应,形成了一种非荧光复合物。紫外线照射可逆转这种偶联,产生荧光物质,可能是通过 β-迈克尔加成过程。在结合态和非结合态的半胱氨酸之间,这一系列事件可以反复发生,从而实现荧光的开-关控制。通过在受光照的单晶中重现这一过程,阐明了光开关的详细机制,以原子分辨率证实了这一机制。