Suppr超能文献

维持性透析患者中使用心电图的深度学习

Deep Learning Using Electrocardiograms in Patients on Maintenance Dialysis.

作者信息

Zheng Zhong, Soomro Qandeel H, Charytan David M

机构信息

Nephology Division, Department of Medicine, New York University Grossman School of Medicine, New York, NY.

Nephology Division, Department of Medicine, New York University Grossman School of Medicine, New York, NY.

出版信息

Adv Kidney Dis Health. 2023 Jan;30(1):61-68. doi: 10.1053/j.akdh.2022.11.009.

Abstract

Cardiovascular morbidity and mortality occur with an extraordinarily high incidence in the hemodialysis-dependent end-stage kidney disease population. There is a clear need to improve identification of those individuals at the highest risk of cardiovascular complications in order to better target them for preventative therapies. Twelve-lead electrocardiograms are ubiquitous and use inexpensive technology that can be administered with minimal inconvenience to patients and at a minimal burden to care providers. The embedded waveforms encode significant information on the cardiovascular structure and function that might be unlocked and used to identify at-risk individuals with the use of artificial intelligence techniques like deep learning. In this review, we discuss the experience with deep learning-based analysis of electrocardiograms to identify cardiovascular abnormalities or risk and the potential to extend this to the setting of dialysis-dependent end-stage kidney disease.

摘要

在依赖血液透析的终末期肾病患者群体中,心血管疾病的发病率和死亡率极高。显然,有必要更好地识别那些心血管并发症风险最高的个体,以便更有针对性地对他们进行预防性治疗。十二导联心电图随处可见,其技术成本低廉,给患者带来的不便最小,对医护人员的负担也最小。嵌入的波形编码了有关心血管结构和功能的重要信息,利用深度学习等人工智能技术或许可以解开这些信息并用于识别高危个体。在这篇综述中,我们讨论了基于深度学习分析心电图以识别心血管异常或风险的经验,以及将其扩展到依赖透析的终末期肾病患者群体的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验