Suppr超能文献

用于化学发光的氮硫共掺杂石墨烯量子点

Nitrogen- and sulfur-doped graphene quantum dots for chemiluminescence.

作者信息

Qin Xiaoli, Zhan Ziying, Zhang Ruizhong, Chu Kenneth, Whitworth Zackry, Ding Zhifeng

机构信息

Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.

College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.

出版信息

Nanoscale. 2023 Feb 23;15(8):3864-3871. doi: 10.1039/d2nr07213k.

Abstract

Graphene quantum dots (GQDs), as one of the most promising luminescent nanomaterials, have been receiving increasing attention in various applications. However, it is still a challenge to improve their chemiluminescence (CL) quantum efficiency. Herein, the CL emissions of nitrogen- and sulfur-doped GQDs (NS-GQDs), nitrogen-doped GQDs (N-GQDs) and undoped GQDs synthesized through one-pot high-temperature pyrolysis are investigated in their chemical reactions with bis(2-carbopentyloxy-3,5,6-trichlorophenyl) oxalate (CPPO) and hydrogen peroxide (HO). A bright blue emission, and yellowish green and yellowish white light from NS-GQDs, N-GQDs and GQDs can be observed, respectively, in the mixture solutions with CPPO and HO. For the first time, spooling CL spectroscopy was used to investigate the CL reaction mechanisms, illuminant decays and the absolute CL efficiencies of these three GQD systems. Compared with the same system of undoped GQDs, it has been found that the NS-GQDs not only present slower illuminant decay, but also display an absolute CL quantum efficiency of 0.01%, 5-fold enhancement, due to the increase in N and S doping for a well-defined band gap energy. Moreover, three peak wavelengths attributed to intrinsic emission at 425 nm, aggregation-induced emission (AIE) at 575 nm and S-doped emissive surface states at 820 nm are observed for the first time in the NS-GQD system. The CL spectrum of N-GQDs displays two emission peaks at 395 and 575 nm attributed to intrinsic emission and AIE, whereas the CL spectrum of undoped GQDs demonstrates 500 nm and 600 nm peak wavelengths attributed to core emission and AIE. Absolute CL quantum efficiencies from these emissions at these various peaks can be determined quantitatively. This study provides guidance on tuning the surface states of GQD for more conducive injection of electrons and holes, facilitating the production of CL emission, which is beneficial for promoting the development of optical, bioassay and energy conversion applications.

摘要

作为最具前景的发光纳米材料之一,石墨烯量子点(GQDs)在各种应用中受到越来越多的关注。然而,提高其化学发光(CL)量子效率仍然是一个挑战。在此,通过一锅高温热解合成的氮硫共掺杂石墨烯量子点(NS-GQDs)、氮掺杂石墨烯量子点(N-GQDs)和未掺杂石墨烯量子点在与双(2-羧戊氧基-3,5,6-三氯苯基)草酸酯(CPPO)和过氧化氢(HO)的化学反应中的CL发射情况得到了研究。在含有CPPO和HO的混合溶液中,分别可以观察到NS-GQDs发出亮蓝色光,N-GQDs发出黄绿色光,未掺杂石墨烯量子点发出黄白色光。首次采用盘绕式CL光谱研究这三种GQD体系的CL反应机理、发光体衰减和绝对CL效率。与未掺杂石墨烯量子点的相同体系相比,发现NS-GQDs不仅发光体衰减较慢,而且由于氮和硫掺杂增加导致能带隙能量明确,其绝对CL量子效率提高了5倍,达到0.01%。此外,在NS-GQD体系中首次观察到三个峰值波长,分别归因于425nm处的本征发射、575nm处的聚集诱导发射(AIE)和820nm处的硫掺杂发射表面态。N-GQDs的CL光谱在395和575nm处显示两个发射峰,分别归因于本征发射和AIE,而未掺杂石墨烯量子点的CL光谱在500nm和600nm处显示峰值波长,分别归因于核心发射和AIE。可以定量测定这些不同峰值处这些发射的绝对CL量子效率。这项研究为调节GQD的表面态以更有利于电子和空穴的注入、促进CL发射的产生提供了指导,这有利于推动光学、生物分析和能量转换应用的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验