CEA, DRF, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38054, France; CNRS, UMR 5249, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38054, France; Université Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38000, France; Université des Frères Mentouri, Laboratoire de Génie Microbiologique et Applications, Constantine 25117, Algeria.
Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria.
J Environ Manage. 2023 Apr 15;332:117322. doi: 10.1016/j.jenvman.2023.117322. Epub 2023 Jan 30.
Phenolic compounds are frequently occurring in wastewaters from various industrial processes at high concentrations, imposing prominent risk to aquatic biosphere and human health. Bioremediation has been proven to be an effective approach to remove these compounds, and hunting for functional organisms is still of primary importance to develop efficient processes. In this study, we report several newly isolated bacillus strains with superior performances in metabolizing phenols, one of which showed paramount efficiencies to metabolize phenol at concentrations up to 1200 mg L and could simultaneously degrade a wide range of other phenolic compounds. The genes encoding for phenol hydroxylase (PH) and catechol-2,3-dioxygenase (C23O) have been detected and characterized, evidencing that phenol degradation occurs via the meta pathway. The GC level of the PH gene was found to be much higher than that of genes from other Bacilli but was quite close to that of the genes from Rhodococcus, and the induction of both enzymes by phenols was confirmed by RT-PCR experiments. We intend to believe this novel strain might be promising to serve as preferred organisms for developing more robust and efficient bioremediation processes of degrading phenolic compounds due to its validated performance.
酚类化合物经常在各种工业过程的废水中以高浓度存在,对水生生物界和人类健康构成显著风险。生物修复已被证明是去除这些化合物的有效方法,而寻找功能生物仍然是开发高效处理过程的首要任务。在这项研究中,我们报告了几种新分离的芽孢杆菌菌株,它们在代谢酚类化合物方面表现出色,其中一种菌株在 1200 毫克/升的浓度下对代谢酚具有卓越的效率,并且可以同时降解广泛的其他酚类化合物。已经检测到并表征了编码苯酚羟化酶 (PH) 和儿茶酚-2,3-双加氧酶 (C23O) 的基因,证明酚的降解是通过间位途径进行的。发现 PH 基因的 GC 水平远高于其他芽孢杆菌的基因,但与 Rhodococcus 的基因非常接近,并且通过 RT-PCR 实验证实了这两种酶对酚类化合物的诱导。我们相信,由于其经过验证的性能,这种新型菌株可能有望成为开发更强大和高效的生物修复酚类化合物处理过程的首选生物。