Suppr超能文献

随钻方位伽马成像测井的快速前向算法。

A fast forward algorithm of azimuthal gamma imaging logging while drilling.

机构信息

School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu Province, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, Gansu Province, China.

School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu Province, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, Gansu Province, China.

出版信息

Appl Radiat Isot. 2023 Apr;194:110659. doi: 10.1016/j.apradiso.2023.110659. Epub 2023 Jan 19.

Abstract

Logging while drilling (LWD) technology can evaluate the formation interface and stratigraphic properties around the borehole in real time, so as to adjust the drilling trajectory and effectively improve the reservoir encounter rate. Fast forward algorithm can be used with LWD, by comparing the fast forward results with the actual gamma LWD results, it can distinguish the formation interface more accurately. Fast forward algorithm also can provide a theoretical basis for geosteering and azimuthal gamma logging interpretation. In this paper, based on the spatial distribution law of gamma rays and The Monte Carlo N-particle code (MCNP)-driven spatial sensitivity function, a 3D fast forward method of gamma ray LWD is proposed. Compared with the traditional algorithms, the new method can realize the fast simulations of gamma ray logging in four sectors, which enables fast azimuthal imaging. The comparison shows that whether in vertical wells or high-angle wells, the results of the proposed method are in high agreement with the MCNP fine simulations. In addition, the new method improves the calculation speed by tens of thousands of times with comparable accuracy. Finally, the gamma logging-while-drilling data of a highly deviated well in a field case verifies the accuracy and applicability of the method. The algorithm can meet the requirements of LWD for fast forward modeling of azimuthal natural gamma ray logging, which is expected to be applied to geosteering and logging interpretation of high angle and horizontal wells.

摘要

随钻测井(LWD)技术可以实时评估井眼周围的地层界面和地层特性,从而调整钻井轨迹,有效提高储层相遇率。可以将快速前向算法与 LWD 一起使用,通过将快速前向结果与实际伽马 LWD 结果进行比较,可以更准确地识别地层界面。快速前向算法还可以为地质导向和方位伽马测井解释提供理论依据。本文基于伽马射线的空间分布规律和蒙特卡罗 N 粒子码(MCNP)驱动的空间灵敏度函数,提出了一种伽马射线 LWD 的 3D 快速前向方法。与传统算法相比,新方法可以实现伽马射线测井在四个扇区的快速模拟,从而实现快速方位成像。对比表明,无论是在垂直井还是大斜度井中,该方法的结果与 MCNP 精细模拟都高度吻合。此外,新方法在保持相当精度的同时,计算速度提高了数万倍。最后,通过现场实例中一口大斜度井的伽马随钻测井数据验证了该方法的准确性和适用性。该算法可以满足 LWD 对方位自然伽马随钻测井快速前向建模的要求,有望应用于大斜度和水平井的地质导向和测井解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验