Suppr超能文献

利用牛乳傅里叶变换红外光谱建立酮血症的新型预测模型。

Novel prediction models for hyperketonemia using bovine milk Fourier-transform infrared spectroscopy.

机构信息

University of Wisconsin - Madison, School of Veterinary Medicine, Department of Medical Science, Veterinary Medicine Bldg., 2015 Linden Dr, Madison 53706, USA.

University of Wisconsin - Madison, School of Veterinary Medicine, Department of Medical Science, Veterinary Medicine Bldg., 2015 Linden Dr, Madison 53706, USA.

出版信息

Prev Vet Med. 2023 Apr;213:105860. doi: 10.1016/j.prevetmed.2023.105860. Epub 2023 Jan 25.

Abstract

Metabolic diseases driven by negative energy balance in dairy cattle contribute to reduced milk production, increased disease incidence, culling, and death. Cow side tests for negative energy balance markers are available but are labor-intensive. Milk sample analysis using Fourier transform infrared spectroscopy (FTIR) allows for sampling numerous cows simultaneously. FTIR prediction models have moderate accuracy for hyperketonemia diagnosis (beta-hydroxybutyrate (BHB) ≥ 1.2 mmol/L). Most research using FTIR has focused on homogenous datasets and conventional prediction models, including partial least squares, linear discriminant analysis, and ElasticNet. Our objective was to evaluate more diverse modeling options, such as deep learning, gradient boosting machine models, and model ensembles for hyperketonemia classification. We compiled a sizable, heterogeneous dataset including milk FTIR and concurrent blood samples. Blood samples were tested for blood BHB, and wavenumber data was obtained from milk FTIR analysis. Using this dataset, we trained conventional prediction models and other options listed above. We demonstrate prediction model performance is similar for convolutional neural networks and ensemble models to simpler algorithm options. Results obtained from this study indicate that deep learning and model ensembles are potential algorithm options for predicting hyperketonemia in dairy cattle. Additionally, our results indicate hyperketonemia prediction models can be developed using heterogeneous datasets.

摘要

奶牛负平衡引起的代谢疾病会导致产奶量减少、疾病发病率增加、淘汰和死亡。目前已经有针对奶牛负平衡标志物的牛体检测试方法,但这些方法劳动强度大。利用傅里叶变换红外光谱(FTIR)对牛奶样本进行分析,可以同时对大量奶牛进行采样。FTIR 预测模型对酮血症(β-羟丁酸(BHB)≥1.2mmol/L)的诊断具有中等准确性。大多数使用 FTIR 的研究都集中在同质数据集和传统预测模型上,包括偏最小二乘法、线性判别分析和弹性网络。我们的目标是评估更多不同的建模选项,如深度学习、梯度提升机模型和用于酮血症分类的模型集成。我们编译了一个规模较大、异构的数据集,包括牛奶 FTIR 和同期的血液样本。对血液样本进行血液 BHB 检测,并从牛奶 FTIR 分析中获取波数数据。利用该数据集,我们训练了传统预测模型和上述其他选项。我们证明,对于卷积神经网络和集成模型来说,预测模型的性能与更简单的算法选项相似。本研究的结果表明,深度学习和模型集成是预测奶牛酮血症的潜在算法选项。此外,我们的结果还表明,可以使用异构数据集来开发酮血症预测模型。

相似文献

本文引用的文献

1
Deep Neural Networks and Tabular Data: A Survey.深度神经网络与表格数据:一项综述。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7499-7519. doi: 10.1109/TNNLS.2022.3229161. Epub 2024 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验