Suppr超能文献

基于官能团特性和取代模式预测有机储能材料的溶解度

Predicting the Solubility of Organic Energy Storage Materials Based on Functional Group Identity and Substitution Pattern.

作者信息

Tuttle Madison R, Brackman Emma M, Sorourifar Farshud, Paulson Joel, Zhang Shiyu

机构信息

Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio43210, United States.

Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio43210, United States.

出版信息

J Phys Chem Lett. 2023 Feb 9;14(5):1318-1325. doi: 10.1021/acs.jpclett.3c00182. Epub 2023 Feb 1.

Abstract

Organic electrode materials (OEMs) provide sustainable alternatives to conventional electrode materials based on transition metals. However, the application of OEMs in lithium-ion and redox flow batteries requires either low or high solubility. Currently, the identification of new OEM candidates relies on chemical intuition and trial-and-error experimental testing, which is costly and time intensive. Herein, we develop a simple empirical model that predicts the solubility of anthraquinones based on functional group identity and substitution pattern. Within this statistical scaffold, a training set of 18 anthraquinone derivatives allows us to predict the solubility of 808 quinones. Internal and external validations show that our model can predict the solubility of anthraquinones in battery electrolytes within log ± 0.7, which is a much higher accuracy than existing solubility models. As a demonstration of the utility of our approach, we identified several new anthraquinones with low solubilities and successfully demonstrated their utility experimentally in Li-organic cells.

摘要

有机电极材料(OEMs)为基于过渡金属的传统电极材料提供了可持续的替代方案。然而,OEMs在锂离子电池和氧化还原液流电池中的应用需要低溶解度或高溶解度。目前,新型OEM候选材料的识别依赖于化学直觉和反复试验的实验测试,这既昂贵又耗时。在此,我们开发了一个简单的经验模型,该模型基于官能团特性和取代模式预测蒽醌的溶解度。在这个统计框架内,一组包含18种蒽醌衍生物的训练集使我们能够预测808种醌的溶解度。内部和外部验证表明,我们的模型能够在log ± 0.7范围内预测蒽醌在电池电解质中的溶解度,这比现有的溶解度模型具有更高的准确性。作为我们方法实用性的一个例证,我们鉴定出了几种低溶解度的新型蒽醌,并在锂有机电池中通过实验成功证明了它们的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验