Department of Physics "A. Pontremoli," University of Milan, Via Celoria 16, 20133 Milan, Italy.
Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA.
J Chem Phys. 2023 Jan 28;158(4):044901. doi: 10.1063/5.0137111.
We show that an analogy between crowding in fluid and jammed phases of hard spheres captures the density dependence of the kissing number for a family of numerically generated jammed states. We extend this analogy to jams of mixtures of hard spheres in d = 3 dimensions and, thus, obtain an estimate of the random close packing volume fraction, ϕ, as a function of size polydispersity. We first consider mixtures of particle sizes with discrete distributions. For binary systems, we show agreement between our predictions and simulations using both our own results and results reported in previous studies, as well as agreement with recent experiments from the literature. We then apply our approach to systems with continuous polydispersity using three different particle size distributions, namely, the log-normal, Gamma, and truncated power-law distributions. In all cases, we observe agreement between our theoretical findings and numerical results up to rather large polydispersities for all particle size distributions when using as reference our own simulations and results from the literature. In particular, we find ϕ to increase monotonically with the relative standard deviation, s, of the distribution and to saturate at a value that always remains below 1. A perturbative expansion yields a closed-form expression for ϕ that quantitatively captures a distribution-independent regime for s < 0.5. Beyond that regime, we show that the gradual loss in agreement is tied to the growth of the skewness of size distributions.
我们证明了硬球在拥挤的流体相与被堵塞的相之间的类比可以捕捉到一系列被堵塞状态的接吻数的密度依赖性。我们将这种类比扩展到了三维硬球混合物的堵塞相中,从而获得了随机密堆积体积分数ϕ作为尺寸多分散性的函数的估计。我们首先考虑具有离散分布的颗粒尺寸混合物。对于二元体系,我们展示了我们的预测与模拟之间的一致性,这些模拟既使用了我们自己的结果和之前研究报告的结果,也与文献中的最新实验结果一致。然后,我们使用三种不同的颗粒尺寸分布(即对数正态分布、伽马分布和截断幂律分布)将我们的方法应用于具有连续多分散性的系统。在所有情况下,当使用我们自己的模拟和文献中的结果作为参考时,我们的理论发现与数值结果之间都存在一致性,直到所有颗粒尺寸分布的多分散性达到相当大的程度。特别是,我们发现ϕ随着分布的相对标准偏差 s 的增加而单调增加,并在一个值处饱和,该值始终低于 1。一个微扰展开给出了ϕ的闭式表达式,该表达式定量地捕捉了 s < 0.5 时的一个与分布无关的区域。在该区域之外,我们表明,逐渐失去一致性与尺寸分布的偏度增长有关。