van 't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
J Chem Phys. 2023 Jan 28;158(4):044504. doi: 10.1063/5.0124852.
Methane hydrates are important from a scientific and industrial perspective, and form by nucleation and growth from a supersaturated aqueous solution of methane. Molecular simulation is able to shed light on the process of homogeneous nucleation of hydrates, using straightforward molecular dynamics or rare event enhanced sampling techniques with atomistic and coarse grained force fields. In our previous work [Arjun, T. A. Berendsen, and P. G. Bolhuis, Proc. Natl. Acad. Sci. U. S. A. 116, 19305 (2019)], we performed transition path sampling (TPS) simulations using all atom force fields under moderate driving forces at high pressure, which enabled unbiased atomistic insight into the formation of methane hydrates. The supersaturation in these simulations was influenced by the Laplace pressure induced by the spherical gas reservoir. Here, we investigate the effect of removing this influence. Focusing on the supercooled, supersaturated regime to keep the system size tractable, our TPS simulations indicate that nuclei form amorphous structures below roughly 260 K and crystalline sI structures above 260 K. For these temperatures, the average transition path lengths are significantly longer than in our previous study, pushing the boundaries of what can be achieved with TPS. The temperature to observe a critical nucleus of certain size was roughly 20 K lower compared to a spherical reservoir due to the lower concentration of methane in the solution, yielding a reduced driving force. We analyze the TPS results using a model based on classical nucleation theory. The corresponding free energy barriers are estimated and found to be consistent with previous predictions, thus adding to the overall picture of the hydrate formation process.
甲烷水合物在科学和工业方面都很重要,它们通过甲烷过饱和水溶液的成核和生长形成。分子模拟能够揭示水合物均匀成核的过程,使用简单的分子动力学或稀有事件增强采样技术,以及原子和粗粒力场。在我们之前的工作中[Arjun,T.A. Berendsen 和 P.G. Bolhuis,Proc. Natl. Acad. Sci. U. S. A. 116,19305(2019)],我们在高压下使用全原子力场进行过渡路径采样(TPS)模拟,在适度驱动力下进行无偏原子洞察甲烷水合物的形成。这些模拟中的过饱和度受到球形气体储层引起的拉普拉斯压力的影响。在这里,我们研究了去除这种影响的效果。关注过冷、过饱和的区域,使系统大小易于处理,我们的 TPS 模拟表明,在大约 260 K 以下,核形成无定形结构,在 260 K 以上形成结晶 sI 结构。对于这些温度,平均过渡路径长度比我们之前的研究长得多,这推动了 TPS 可以实现的极限。由于溶液中甲烷的浓度较低,观察到一定大小的临界核所需的温度比球形储层低约 20 K,从而降低了驱动力。我们使用基于经典成核理论的模型分析 TPS 结果。估计了相应的自由能垒,并发现与以前的预测一致,从而增加了水合物形成过程的整体图景。