Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany.
J Chem Phys. 2023 Jan 28;158(4):044121. doi: 10.1063/5.0136844.
Herein, we present a new method to efficiently calculate electronically excited states in large molecular assemblies, consisting of hundreds of molecules. For this purpose, we combine the long-range corrected tight-binding density functional fragment molecular orbital method (FMO-LC-DFTB) with an excitonic Hamiltonian, which is constructed in the basis of locally excited and charge-transfer configuration state functions calculated for embedded monomers and dimers and accounts explicitly for the electronic coupling between all types of excitons. We first evaluate both the accuracy and efficiency of our fragmentation approach for molecular dimers and aggregates by comparing it with the full LC-TD-DFTB method. The comparison of the calculated spectra of an anthracene cluster shows a very good agreement between our method and the LC-TD-DFTB reference. The effective computational scaling of our method has been explored for anthracene clusters and for perylene bisimide aggregates. We demonstrate the applicability of our method by the calculation of the excited state properties of pentacene crystal models consisting of up to 319 molecules. Furthermore, the participation ratio of the monomer fragments to the excited states is analyzed by the calculation of natural transition orbital participation numbers, which are verified by the hole and particle density for a chosen pentacene cluster. The use of our FMO-LC-TDDFTB method will allow for future studies of excitonic dynamics and charge transport to be performed on complex molecular systems consisting of thousands of atoms.
在此,我们提出了一种新的方法,可以有效地计算由数百个分子组成的大型分子组装体中的电子激发态。为此,我们将长程校正的紧束缚密度泛函片段分子轨道方法(FMO-LC-DFTB)与激子哈密顿量相结合,该哈密顿量是基于为嵌入单体和二聚体计算的局域激发和电荷转移组态态函数构建的,并明确考虑了所有类型激子之间的电子耦合。我们首先通过将其与全 LC-TD-DFTB 方法进行比较,评估了我们用于分子二聚体和聚集体的分段方法的准确性和效率。对蒽团簇的计算光谱的比较表明,我们的方法与 LC-TD-DFTB 参考值非常吻合。我们还探索了我们的方法在蒽团簇和并苯二酰亚胺聚集体中的有效计算缩放性。我们通过计算由多达 319 个分子组成的 pentacene 晶体模型的激发态性质来证明我们方法的适用性。此外,通过计算自然跃迁轨道参与数分析了单体片段对激发态的参与比,通过选择的 pentacene 团簇的空穴和粒子密度对其进行了验证。我们的 FMO-LC-TDDFTB 方法的使用将允许在由数千个原子组成的复杂分子系统上进行激子动力学和电荷输运的未来研究。