Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
Department of Natural Sciences, Middlesex University, London, UK.
Sci Rep. 2023 Feb 1;13(1):1868. doi: 10.1038/s41598-023-29036-7.
Breast cancer is a global health issue affecting 2.3 million women per year, causing death in over 600,000. Mammography (and biopsy) is the gold standard for screening and diagnosis. Whilst effective, this test exposes individuals to radiation, has limitations to its sensitivity and specificity and may cause moderate to severe discomfort. Some women may also find this test culturally unacceptable. This proof-of-concept study, combining bottom-up proteomics with Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI MS) detection, explores the potential for a non-invasive technique for the early detection of breast cancer from fingertip smears. A cohort of 15 women with either benign breast disease (n = 5), early breast cancer (n = 5) or metastatic breast cancer (n = 5) were recruited from a single UK breast unit. Fingertips smears were taken from each patient and from each of the ten digits, either at the time of diagnosis or, for metastatic patients, during active treatment. A number of statistical analyses and machine learning approaches were investigated and applied to the resulting mass spectral dataset. The highest performing predictive method, a 3-class Multilayer Perceptron neural network, yielded an accuracy score of 97.8% when categorising unseen MALDI MS spectra as either the benign, early or metastatic cancer classes. These findings support the need for further research into the use of sweat deposits (in the form of fingertip smears or fingerprints) for non-invasive screening of breast cancer.
乳腺癌是一个全球性的健康问题,每年影响 230 万女性,导致超过 60 万人死亡。乳腺 X 线摄影(和活检)是筛查和诊断的金标准。虽然有效,但该检测会使个体暴露在辐射下,其灵敏度和特异性存在局限性,并且可能导致中度至重度不适。一些女性可能也觉得该检测在文化上不可接受。这项基于蛋白质组学的概念验证研究结合了自上而下的蛋白质组学和基质辅助激光解吸电离质谱(MALDI MS)检测,探索了从指尖拭子进行乳腺癌早期非侵入性检测的潜在可能性。从英国的一个乳腺科招募了 15 名患有良性乳腺疾病(n=5)、早期乳腺癌(n=5)或转移性乳腺癌(n=5)的女性患者。从每位患者和每个手指采集指尖拭子,采集时间要么是在诊断时,要么是转移性患者正在接受治疗时。对一系列统计分析和机器学习方法进行了研究,并应用于产生的质谱数据集。表现最佳的预测方法是一个三层感知器神经网络,在将未见过的 MALDI MS 光谱分类为良性、早期或转移性癌症类别时,其准确率为 97.8%。这些发现支持进一步研究使用汗液沉积物(以指尖拭子或指纹的形式)进行乳腺癌的非侵入性筛查。