Zhang Xibo, Chen Yang-Yang, Liu Longxiang, Deng Youjin, Guan Xiwen
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.
Natl Sci Rev. 2022 Feb 24;9(12):nwac027. doi: 10.1093/nsr/nwac027. eCollection 2022 Dec.
Quantum statistics plays a fundamental role in the laws of nature. Haldane fractional exclusion statistics (FES) generalizes the Pauli exclusion statistics, and can emerge in the properties of elementary particles and hole excitations of a quantum system consisting of conventional bosons or fermions. FES has a long history of intensive studies, but its simple realization in interacting physical systems is rare. Here we report a simple non-mutual FES that depicts the particle-hole symmetry breaking in interacting Bose gases at a quantum critical point. We show that the FES distribution directly comes from particle-hole symmetry breaking. Based on exact solutions, quantum Monte Carlo simulations and experiments, we find that, over a wide range of interaction strengths, the macroscopic physical properties of these gases are determined by non-interacting quasi-particles that obey non-mutual FES of the same form in one and two dimensions. Whereas strongly interacting Bose gases reach full fermionization in one dimension, they exhibit incomplete fermionization in two dimensions. Our results provide a generic connection between interaction-induced particle-hole symmetry breaking (depicted by FES) and macroscopic properties of many-body systems in arbitrary dimensions. Our work lays the groundwork for using FES to explore quantum criticality and other novel many-body phenomena in strongly correlated quantum systems.
量子统计在自然规律中起着基础性作用。霍尔丹分数排斥统计(FES)推广了泡利排斥统计,并且可以出现在由传统玻色子或费米子组成的量子系统的基本粒子和空穴激发的性质中。FES有着长期深入研究的历史,但在相互作用的物理系统中其简单实现却很罕见。在此我们报告一种简单的非相互FES,它描述了量子临界点处相互作用玻色气体中的粒子 - 空穴对称性破缺。我们表明FES分布直接源于粒子 - 空穴对称性破缺。基于精确解、量子蒙特卡罗模拟和实验,我们发现,在广泛的相互作用强度范围内,这些气体的宏观物理性质由在一维和二维中遵循相同形式的非相互准粒子决定。虽然强相互作用玻色气体在一维中达到完全费米化,但它们在二维中表现出不完全费米化。我们的结果提供了相互作用诱导的粒子 - 空穴对称性破缺(由FES描述)与任意维度多体系统宏观性质之间的一般联系。我们的工作为利用FES探索强关联量子系统中的量子临界性和其他新颖的多体现象奠定了基础。