Basri Rabea, Awan Faryal Mehwish, Yang Burton B, Awan Usman Ayub, Obaid Ayesha, Naz Anam, Ikram Aqsa, Khan Suliman, Haq Ijaz Ul, Khan Sadiq Noor, Aqeel Muslim Bin
Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan.
Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada.
Front Mol Neurosci. 2023 Jan 16;15:1078441. doi: 10.3389/fnmol.2022.1078441. eCollection 2022.
Altered autophagy is a hallmark of neurodegeneration but how autophagy is regulated in the brain and dysfunctional autophagy leads to neuronal death has remained cryptic. Being a key cellular waste-recycling and housekeeping system, autophagy is implicated in a range of brain disorders and altering autophagy flux could be an effective therapeutic strategy and has the potential for clinical applications down the road. Tight regulation of proteins and organelles in order to meet the needs of complex neuronal physiology suggests that there is distinct regulatory pattern of neuronal autophagy as compared to non-neuronal cells and nervous system might have its own separate regulator of autophagy. Evidence has shown that circRNAs participates in the biological processes of autophagosome assembly. The regulatory networks between circRNAs, autophagy, and neurodegeneration remains unknown and warrants further investigation. Understanding the interplay between autophagy, circRNAs and neurodegeneration requires a knowledge of the multiple steps and regulatory interactions involved in the autophagy pathway which might provide a valuable resource for the diagnosis and therapy of neurodegenerative diseases. In this review, we aimed to summarize the latest studies on the role of brain-protective mechanisms of autophagy associated circRNAs in neurodegenerative diseases (including Alzheimer's disease, Parkinson's disease, Huntington's disease, Spinal Muscular Atrophy, Amyotrophic Lateral Sclerosis, and Friedreich's ataxia) and how this knowledge can be leveraged for the development of novel therapeutics against them. Autophagy stimulation might be potential one-size-fits-all therapy for neurodegenerative disease as per considerable body of evidence, therefore future research on brain-protective mechanisms of autophagy associated circRNAs will illuminate an important feature of nervous system biology and will open the door to new approaches for treating neurodegenerative diseases.
自噬改变是神经退行性变的一个标志,但自噬在大脑中是如何被调控的,以及功能失调的自噬如何导致神经元死亡,仍然是个谜。作为一种关键的细胞废物回收和内务管理系统,自噬与一系列脑部疾病有关,改变自噬通量可能是一种有效的治疗策略,并且在未来有临床应用的潜力。为了满足复杂的神经元生理学需求而对蛋白质和细胞器进行严格调控,这表明与非神经元细胞相比,神经元自噬存在独特的调控模式,并且神经系统可能有其自身独立的自噬调节因子。有证据表明,环状RNA参与自噬体组装的生物学过程。环状RNA、自噬和神经退行性变之间的调控网络仍然未知,值得进一步研究。了解自噬、环状RNA和神经退行性变之间的相互作用,需要了解自噬途径中涉及的多个步骤和调控相互作用,这可能为神经退行性疾病的诊断和治疗提供有价值的资源。在这篇综述中,我们旨在总结关于自噬相关环状RNA在神经退行性疾病(包括阿尔茨海默病、帕金森病、亨廷顿病、脊髓性肌萎缩症、肌萎缩侧索硬化症和弗里德赖希共济失调)中的脑保护机制作用的最新研究,以及如何利用这些知识开发针对这些疾病的新型疗法。根据大量证据,自噬刺激可能是一种适用于神经退行性疾病的通用疗法,因此未来关于自噬相关环状RNA脑保护机制的研究将阐明神经系统生物学的一个重要特征,并将为治疗神经退行性疾病的新方法打开大门。