Suppr超能文献

探讨创伤性脑损伤退伍军人睡眠呼吸暂停诊断与自杀风险之间的关系:VA TBI 模型系统研究。

Examining the Relationship Between Sleep Apnea Diagnosis and Suicide Risk in Veterans With Traumatic Brain Injury: A VA TBI Model Systems Study.

机构信息

Mental Health and Behavioral Sciences Section (Drs Silva, Gonzalez, and Martin) and Research Service (Mr Moberg), James A. Haley Veterans' Hospital, Tampa, Florida; Dept. of Internal Medicine and Dept. of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa (Dr Silva); Tampa VA Research and Education Foundation, Tampa, Florida (Dr Tang); Central Virginia VA Health Care System, Richmond (Drs Carnahan and Klyce); Dept. of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond (Dr Klyce); Sheltering Arms Institute, Richmond, Virginia (Dr Klyce); VA Palo Alto Healthcare Center, Palo Alto, California (Dr Liou-Johnson); Clinical Excellence Research Center, Stanford University School of Medicine, Stanford, California (Dr Liou-Johnson); Traumatic Brain Injury Center of Excellence (TBICoE), Tampa, Florida (Mr Moberg); and University of Alabama at Birmingham (Dr Dreer). Dr Carnahan is now affiliated with the Department of Physical Medicine and Rehabilitation at Johns Hopkins, Baltimore, Maryland.

出版信息

J Head Trauma Rehabil. 2023;38(5):359-367. doi: 10.1097/HTR.0000000000000856. Epub 2023 Jan 21.

Abstract

OBJECTIVE

Obstructive sleep apnea (OSA) is a common sleep disorder in people with traumatic brain injury (TBI). Although sleep disturbances have been associated with an increased risk of suicide compared with the general population, the relationship between OSA and suicide risk after TBI is not well documented. In this study, we hypothesized that OSA diagnosis would predict suicide risk in veterans with TBI.

SETTING

Five Veterans Affairs (VA) Polytrauma Rehabilitation Centers.

PARTICIPANTS

Participants were drawn from the VA TBI Model Systems study, with follow-up interviews at year 1 ( n = 392), year 2 ( n = 444), year 5 ( n = 498), or year 10 ( n = 252) post-TBI (7.8%-14.5% follow-up attrition).

DESIGN

This was a retrospective analysis from observational data using logistic regression with repeated measurements. Suicide ideation and suicide attempts were examined as outcomes at each follow-up to evaluate the relationship between OSA and suicide risk after adjusting for other risk factors determined a priori via literature review.

MAIN MEASURES

Suicidal ideation (Patient Health Questionnaire-9 item 9), suicide attempt during the past year (self-reported), and OSA diagnosis (self-reported).

RESULTS

Contrary to study hypotheses, OSA diagnosis had no statistically significant association with suicide ideation or attempt after accounting for known predictors. However, greater depression symptoms, headache severity, and pre-TBI suicidal ideation and attempts predicted suicide risk at follow-up after accounting for other predictors.

CONCLUSIONS

Results of this study did not support a relationship between OSA and suicide risk, possibly due to methodological limitations of OSA measurement. Future research on this topic should include objective measures of OSA severity and OSA treatment including adherence. Although suicide is a low base rate occurrence, the impact is disastrous and further research is needed to mitigate suicide risk.

摘要

目的

阻塞性睡眠呼吸暂停(OSA)是创伤性脑损伤(TBI)患者常见的睡眠障碍。尽管与普通人群相比,睡眠障碍与自杀风险增加有关,但 TBI 后 OSA 与自杀风险之间的关系尚未得到充分记录。在这项研究中,我们假设 OSA 诊断将预测 TBI 退伍军人的自杀风险。

地点

五个退伍军人事务部(VA)创伤后康复中心。

参与者

参与者来自 VA TBI 模型系统研究,在 TBI 后 1 年(n=392)、2 年(n=444)、5 年(n=498)或 10 年(n=252)进行随访访谈(7.8%-14.5%的随访失访率)。

设计

这是一项使用逻辑回归进行的回顾性分析,具有重复测量。自杀意念和自杀未遂作为每个随访的结果进行检查,以评估在通过文献回顾预先确定的其他风险因素进行调整后,OSA 与自杀风险之间的关系。

主要措施

自杀意念(患者健康问卷-9 项 9 项)、过去一年的自杀尝试(自我报告)和 OSA 诊断(自我报告)。

结果

与研究假设相反,在考虑到已知预测因素后,OSA 诊断与自杀意念或尝试没有统计学上的显著关联。然而,更大的抑郁症状、头痛严重程度以及 TBI 前的自杀意念和尝试预测了其他预测因素后随访的自杀风险。

结论

这项研究的结果不支持 OSA 与自杀风险之间的关系,这可能是由于 OSA 测量的方法学限制。关于这个主题的未来研究应该包括 OSA 严重程度和 OSA 治疗的客观测量,包括依从性。尽管自杀的发生率很低,但影响是灾难性的,需要进一步研究来降低自杀风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验