Suppr超能文献

基于体内自动高分辨率成像检测 HIV 感染者中 HPV 相关肛门癌前病变

Automated In Vivo High-Resolution Imaging to Detect Human Papillomavirus-Associated Anal Precancer in Persons Living With HIV.

机构信息

Department of Bioengineering, Rice University, Houston, Texas, USA.

Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

出版信息

Clin Transl Gastroenterol. 2023 Feb 1;14(2):e00558. doi: 10.14309/ctg.0000000000000558.

Abstract

INTRODUCTION

In the United States, the effectiveness of anal cancer screening programs has been limited by a lack of trained professionals proficient in high-resolution anoscopy (HRA) and a high patient lost-to-follow-up rate between diagnosis and treatment. Simplifying anal intraepithelial neoplasia grade 2 or more severe (AIN 2+) detection could radically improve the access and efficiency of anal cancer prevention. Novel optical imaging providing point-of-care diagnoses could substantially improve existing HRA and histology-based diagnosis. This work aims to demonstrate the potential of high-resolution microendoscopy (HRME) coupled with a novel machine learning algorithm for the automated, in vivo diagnosis of anal precancer.

METHODS

The HRME, a fiber-optic fluorescence microscope, was used to capture real-time images of anal squamous epithelial nuclei. Nuclear staining is achieved using 0.01% wt/vol proflavine, a topical contrast agent. HRME images were analyzed by a multitask deep learning network (MTN) that computed the probability of AIN 2+ for each HRME image.

RESULTS

The study accrued data from 77 people living with HIV. The MTN achieved an area under the receiver operating curve of 0.84 for detection of AIN 2+. At the AIN 2+ probability cutoff of 0.212, the MTN achieved comparable performance to expert HRA impression with a sensitivity of 0.92 ( P = 0.68) and specificity of 0.60 ( P = 0.48) when using histopathology as the gold standard.

DISCUSSION

When used in combination with HRA, this system could facilitate more selective biopsies and promote same-day AIN2+ treatment options by enabling real-time diagnosis.

摘要

简介

在美国,由于缺乏精通高分辨率肛门镜检查(HRA)的专业人员,以及在诊断和治疗之间存在较高的患者失访率,肛门癌筛查计划的效果受到限制。简化高级别肛门上皮内瘤变(AIN 2+)的检测方法可以极大地提高肛门癌预防的可及性和效率。新型光学成像技术提供即时诊断,可大大改善现有的 HRA 和基于组织学的诊断。本研究旨在展示高分辨率显微内镜(HRME)结合新型机器学习算法在自动、体内诊断肛门癌前病变方面的潜力。

方法

HRME 是一种光纤荧光显微镜,用于实时采集肛门鳞状上皮细胞核的图像。细胞核染色是通过使用 0.01%wt/vol 吖啶橙实现的,这是一种局部对比剂。HRME 图像由一个多任务深度学习网络(MTN)进行分析,该网络计算每个 HRME 图像发生 AIN 2+的概率。

结果

该研究共纳入了 77 名 HIV 感染者。MTN 在检测 AIN 2+方面的曲线下面积为 0.84。当 MTN 将 AIN 2+的概率截止值设定为 0.212 时,与专家 HRA 印象相比,该模型的表现相当,以组织病理学为金标准,其敏感性为 0.92(P=0.68),特异性为 0.60(P=0.48)。

讨论

当与 HRA 结合使用时,该系统可以通过实时诊断来促进更有针对性的活检,并提供当天的 AIN2+治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7546/9944690/132ecd6ab84c/ct9-14-e00558-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验