Huang Guan-Yao, Lin Linhan, Zhao Shuang, Li Wenbin, Deng Xiaonan, Zhang Simian, Wang Chen, Li Xiao-Ze, Zhang Yan, Fang Hong-Hua, Zou Yixuan, Li Peng, Bai Benfeng, Sun Hong-Bo, Fu Tairan
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China.
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China.
Nano Lett. 2023 Feb 22;23(4):1514-1521. doi: 10.1021/acs.nanolett.2c04850. Epub 2023 Feb 2.
Excitons are quasi-particles composed of electron-hole pairs through Coulomb interaction. Due to the atomic-thin thickness, they are tightly bound in monolayer transition metal dichalcogenides (TMDs) and dominate their optical properties. The capability to manipulate the excitonic behavior can significantly influence the photon emission or carrier transport performance of TMD-based devices. However, on-demand and region-selective manipulation of the excitonic states in a reversible manner remains challenging so far. Herein, harnessing the coordinated effect of femtosecond-laser-driven atomic defect generation, interfacial electron transfer, and surface molecular desorption/adsorption, we develop an all-optical approach to manipulate the charge states of excitons in monolayer molybdenum disulfide (MoS). Through steering the laser beam, we demonstrate reconfigurable optical encoding of the excitonic charge states (between neutral and negative states) on a single MoS flake. Our technique can be extended to other TMDs materials, which will guide the design of all-optical and reconfigurable TMD-based optoelectronic and nanophotonic devices.
激子是通过库仑相互作用由电子 - 空穴对组成的准粒子。由于其原子级的薄厚度,它们在单层过渡金属二硫属化物(TMDs)中紧密束缚,并主导其光学性质。操纵激子行为的能力可以显著影响基于TMD的器件的光子发射或载流子传输性能。然而,迄今为止,以可逆方式按需和区域选择性地操纵激子态仍然具有挑战性。在此,利用飞秒激光驱动的原子缺陷生成、界面电子转移和表面分子解吸/吸附的协同效应,我们开发了一种全光学方法来操纵单层二硫化钼(MoS)中激子的电荷态。通过控制激光束,我们展示了在单个MoS薄片上对激子电荷态(在中性和负态之间)进行可重构光学编码。我们的技术可以扩展到其他TMDs材料,这将指导基于TMD的全光学和可重构光电器件及纳米光子器件的设计。