Suppr超能文献

Improving Clinical Utility of Real-World Prediction Models: Updating Through Recalibration.

作者信息

Bullock Garrett S, Shanley Ellen, Thigpen Charles A, Arden Nigel K, Noonan Thomas K, Kissenberth Michael J, Wyland Douglas J, Collins Gary S

机构信息

Department of Orthopaedic Surgery and Rehabilitation, Wake Forest School of Medicine, North Carolina.

Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, University of Oxford, Oxford, United Kingdom.

出版信息

J Strength Cond Res. 2023 May 1;37(5):1057-1063. doi: 10.1519/JSC.0000000000004369. Epub 2022 Nov 17.

Abstract

Bullock, GS, Shanley, E, Thigpen, CA, Arden, NK, Noonan, TK, Kissenberth, MJ, Wyland, DJ, and Collins, GS. Improving clinical utility of real-world prediction models: updating through recalibration. J Strength Cond Res 37(5): 1057-1063, 2023-Prediction models can aid clinicians in identifying at-risk athletes. However, sport and clinical practice patterns continue to change, causing predictive drift and potential suboptimal prediction model performance. Thus, there is a need to temporally recalibrate previously developed baseball arm injury models. The purpose of this study was to perform temporal recalibration on a previously developed injury prediction model and assess model performance in professional baseball pitchers. An arm injury prediction model was developed on data from a prospective cohort from 2009 to 2019 on minor league pitchers. Data for the 2015-2019 seasons were used for temporal recalibration and model performance assessment. Temporal recalibration constituted intercept-only and full model redevelopment. Model performance was investigated by assessing Nagelkerke's R-square, calibration in the large, calibration, and discrimination. Decision curves compared the original model, temporal recalibrated model, and current best evidence-based practice. One hundred seventy-eight pitchers participated in the 2015-2019 seasons with 1.63 arm injuries per 1,000 athlete exposures. The temporal recalibrated intercept model demonstrated the best discrimination (0.81 [95% confidence interval [CI]: 0.73, 0.88]) and R-square (0.32) compared with original model (0.74 [95% CI: 0.69, 0.80]; R-square: 0.32) and the redeveloped model (0.80 [95% CI: 0.73, 0.87]; R-square: 0.30). The temporal recalibrated intercept model demonstrated an improved net benefit of 0.34 compared with current best evidence-based practice. The temporal recalibrated intercept model demonstrated the best model performance and clinical utility. Updating prediction models can account for changes in sport training over time and improve professional baseball arm injury outcomes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验