School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, P. R. China.
Adv Mater. 2023 Apr;35(17):e2211871. doi: 10.1002/adma.202211871. Epub 2023 Mar 15.
Suppressing the photon energy loss (E ), especially the non-radiative loss, is of importance to further improve the device performance of organic solar cells (OSCs). However, typical π-conjugated semiconductors possess a large singlet-triplet energy gap (ΔE ), leading to a lower triplet state than charge transfer state and contributing to a non-radiative loss channel of the photocurrent by the triplet state. Herein, a series of triplet polymer donors are developed by introducing a BNIDT block into the PM6 polymer backbone. The high electron affinity of BNIDT and the opposite resonance effect of the BN bond in BNIDT results in a lowered highest occupied molecular orbital (HOMO) and a largely reduced ΔE . Moreover, the morphology of the active blends is also optimized by fine-tuning the BNIDT content. Therefore, non-radiative recombination via the terminal triplet loss channels and morphology traps is effectively suppressed. The PNB-3 (with 3% BNIDT):L8-BO device exhibits both small ΔE and optimized morphology, favoring more efficient charge transfer and transport. Finally, the simultaneously enhanced V of 0.907 V, J of 26.59 mA cm , and FF of 78.86% contribute to a champion PCE of 19.02%. Therefore, introducing BN bonds into benchmark polymers is a possible avenue toward higher-performance of OSCs.
抑制光子能量损失(E),特别是非辐射损失,对于进一步提高有机太阳能电池(OSCs)的器件性能至关重要。然而,典型的π共轭半导体具有较大的单重态-三重态能隙(ΔE),导致三重态低于电荷转移态,并且通过三重态贡献了光电流的非辐射损失通道。在此,通过将 BNIDT 块引入 PM6 聚合物主链,开发了一系列三重态聚合物给体。BNIDT 的高电子亲和力和 BNIDT 中 BN 键的相反共振效应导致降低的最高占据分子轨道(HOMO)和大大降低的ΔE。此外,通过精细调整 BNIDT 含量,还优化了活性混合物的形态。因此,通过末端三重态损失通道和形态陷阱的非辐射复合得到了有效抑制。PNB-3(含 3% BNIDT):L8-BO 器件具有较小的ΔE 和优化的形态,有利于更有效的电荷转移和传输。最终,同时提高的开路电压(V)为 0.907 V,短路电流(J)为 26.59 mA cm,填充因子(FF)为 78.86%,导致冠军功率转换效率(PCE)为 19.02%。因此,将 BN 键引入基准聚合物是提高 OSCs 性能的一种可行途径。