Suppr超能文献

具有小的单重态-三重态能隙的 BN-键合三重聚合物,用于抑制非辐射复合并改善有机太阳能电池中的共混形貌。

BN-Bond-Embedded Triplet Terpolymers with Small Singlet-Triplet Energy Gaps for Suppressing Non-Radiative Recombination and Improving Blend Morphology in Organic Solar Cells.

机构信息

School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, P. R. China.

出版信息

Adv Mater. 2023 Apr;35(17):e2211871. doi: 10.1002/adma.202211871. Epub 2023 Mar 15.

Abstract

Suppressing the photon energy loss (E ), especially the non-radiative loss, is of importance to further improve the device performance of organic solar cells (OSCs). However, typical π-conjugated semiconductors possess a large singlet-triplet energy gap (ΔE ), leading to a lower triplet state than charge transfer state and contributing to a non-radiative loss channel of the photocurrent by the triplet state. Herein, a series of triplet polymer donors are developed by introducing a BNIDT block into the PM6 polymer backbone. The high electron affinity of BNIDT and the opposite resonance effect of the BN bond in BNIDT results in a lowered highest occupied molecular orbital (HOMO) and a largely reduced ΔE . Moreover, the morphology of the active blends is also optimized by fine-tuning the BNIDT content. Therefore, non-radiative recombination via the terminal triplet loss channels and morphology traps is effectively suppressed. The PNB-3 (with 3% BNIDT):L8-BO device exhibits both small ΔE and optimized morphology, favoring more efficient charge transfer and transport. Finally, the simultaneously enhanced V of 0.907 V, J of 26.59 mA cm , and FF of 78.86% contribute to a champion PCE of 19.02%. Therefore, introducing BN bonds into benchmark polymers is a possible avenue toward higher-performance of OSCs.

摘要

抑制光子能量损失(E),特别是非辐射损失,对于进一步提高有机太阳能电池(OSCs)的器件性能至关重要。然而,典型的π共轭半导体具有较大的单重态-三重态能隙(ΔE),导致三重态低于电荷转移态,并且通过三重态贡献了光电流的非辐射损失通道。在此,通过将 BNIDT 块引入 PM6 聚合物主链,开发了一系列三重态聚合物给体。BNIDT 的高电子亲和力和 BNIDT 中 BN 键的相反共振效应导致降低的最高占据分子轨道(HOMO)和大大降低的ΔE。此外,通过精细调整 BNIDT 含量,还优化了活性混合物的形态。因此,通过末端三重态损失通道和形态陷阱的非辐射复合得到了有效抑制。PNB-3(含 3% BNIDT):L8-BO 器件具有较小的ΔE 和优化的形态,有利于更有效的电荷转移和传输。最终,同时提高的开路电压(V)为 0.907 V,短路电流(J)为 26.59 mA cm,填充因子(FF)为 78.86%,导致冠军功率转换效率(PCE)为 19.02%。因此,将 BN 键引入基准聚合物是提高 OSCs 性能的一种可行途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验