Nakamura Noriko, Hamada Risa, Kaneko Hiromasa, Ohta Seiichi
Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.
Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
J Biosci Bioeng. 2023 Apr;135(4):341-347. doi: 10.1016/j.jbiosc.2023.01.005. Epub 2023 Jan 31.
Diffuse large B-cell lymphoma (DLBCL) is the most common type of malignant lymphoma. Although the first-line treatment, R-CHOP treatment, shows efficacy in approximately 80% of patients with DLBCL, some patients have refractory disease or relapse after the initial response to therapy, resulting in a significantly poorer prognosis. In this study, we developed a microRNA (miRNA) signature-based companion diagnostic model to predict the response of patients with DLBCL to R-CHOP treatment by integrating two clinical study datasets. To select the optimum miRNA combination as a panel, we examined three feature selection methods (p-value-based ranking, stepwise method, and Boruta), together with 11 types of classifiers systematically. Boruta selection enabled a higher area under the curve (AUC) with a lower number of miRNAs compared with other feature selection methods, leading to an AUC of 0.751 via the random forest classifier using 36 miRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that Boruta avoided multiple selection of miRNAs with similar functions, thereby preventing the decrease in diagnostic ability via collinearity. The AUC value first increased with an increasing number of miRNAs and then became almost constant at approximately 30 miRNAs, suggesting the existence of the optimum number of miRNAs as a panel for future clinical translation of multiple miRNA-based diagnostics.
弥漫性大B细胞淋巴瘤(DLBCL)是最常见的恶性淋巴瘤类型。尽管一线治疗方案R-CHOP治疗对约80%的DLBCL患者显示出疗效,但一些患者患有难治性疾病或在初始治疗反应后复发,导致预后明显较差。在本研究中,我们通过整合两个临床研究数据集,开发了一种基于微小RNA(miRNA)特征的伴随诊断模型,以预测DLBCL患者对R-CHOP治疗的反应。为了选择最佳的miRNA组合作为一个panel,我们系统地研究了三种特征选择方法(基于p值的排序、逐步法和Boruta)以及11种类型的分类器。与其他特征选择方法相比,Boruta选择能够以较少数量的miRNA获得更高的曲线下面积(AUC),通过使用36个miRNA的随机森林分类器,AUC达到0.751。京都基因与基因组百科全书(KEGG)通路富集分析表明,Boruta避免了对具有相似功能的miRNA进行多重选择,从而防止了由于共线性导致的诊断能力下降。AUC值首先随着miRNA数量的增加而增加,然后在大约30个miRNA时几乎保持恒定,这表明存在作为基于多个miRNA的诊断方法未来临床转化的最佳miRNA数量。