State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Sci Data. 2023 Feb 2;10(1):68. doi: 10.1038/s41597-023-01970-1.
Grazing intensity, characterized by high spatial heterogeneity, is a vital parameter to accurately depict human disturbance and its effects on grassland ecosystems. Grazing census data provide useful county-scale information; however, they do not accurately delineate spatial heterogeneity within counties, and a high-resolution dataset is urgently needed. Therefore, we built a methodological framework combining the cross-scale feature extraction method and a random forest model to spatialize census data after fully considering four features affecting grazing, and produced a high-resolution gridded grazing dataset on the Qinghai-Tibet Plateau in 1982-2015. The proposed method (R = 0.80) exhibited 35.59% higher accuracy than the traditional method. Our dataset were highly consistent with census data (R of spatial accuracy = 0.96, NSE of temporal accuracy = 0.96) and field data (R of spatial accuracy = 0.77). Compared with public datasets, our dataset featured a higher temporal resolution (1982-2015) and spatial resolution (over two times higher). Thus, it has the potential to elucidate the spatiotemporal variation in human activities and guide the sustainable management of grassland ecosystem.
放牧强度具有高度的空间异质性,是准确描述人类干扰及其对草原生态系统影响的重要参数。放牧普查数据提供了有用的县级信息;然而,它们不能准确地描绘县级内的空间异质性,因此急需高分辨率数据集。因此,我们构建了一个结合跨尺度特征提取方法和随机森林模型的方法框架,在充分考虑四个影响放牧的特征后对普查数据进行空间化,生成了 1982-2015 年青藏高原的高分辨率网格化放牧数据集。与传统方法相比,所提出的方法(R=0.80)的精度提高了 35.59%。我们的数据集与普查数据(空间精度的 R 值为 0.96,时间精度的 NSE 值为 0.96)和野外数据(空间精度的 R 值为 0.77)高度一致。与公共数据集相比,我们的数据集具有更高的时间分辨率(1982-2015 年)和空间分辨率(高出两倍多)。因此,它有可能阐明人类活动的时空变化,并指导草原生态系统的可持续管理。