Suppr超能文献

原子级几何模拟研究压力下单晶 sI 甲烷水合物的力学稳定性。

Atomistic-geometric simulations to investigate the mechanical stability of monocrystalline sI methane hydrates under pressure.

机构信息

Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada.

出版信息

Sci Rep. 2023 Feb 2;13(1):1907. doi: 10.1038/s41598-023-29194-8.

Abstract

Gas hydrate mechanical stability under pressure is critically important in energy supply, global warming, and carbon-neutral technologies. The stability of these polyhedral guest-host crystals under increasing pressure is affected by host cage type and face connectivity as well as guest gas occupancy. The geometry-imposed cage connectivity generates crystal lattices that include inclusion-matrix material composite structures. In this paper, we integrate Density Functional Theory simulations with a polyhedral-inspired composite material model that quantifies stability limits, failure modes, and the impact of the type of cage occupancy. DFT reveals the existence of two failure mechanisms under increasing pressure: (i) a multistep lattice breakdown under total occupancy and under only large cage occupancy and (ii) a single-step breakdown under zero occupancy as well as with only small cage occupancy. The DFT-composite model predicts optimal occupancy pathways to generate strength and critical occupancy pathways to promote decomposition.

摘要

在能源供应、全球变暖以及碳中性技术中,气体水合物在压力下的机械稳定性至关重要。这些多面体主体-客体晶体在不断增加的压力下的稳定性受到主体笼型和表面连通性以及客体气体占有率的影响。几何强制的笼型连通性生成包括包含基质材料复合材料结构的晶格。在本文中,我们将密度泛函理论模拟与多面体启发的复合材料模型相结合,该模型量化了稳定性极限、失效模式以及笼型占有率的类型的影响。DFT 揭示了在压力增加下存在两种失效机制:(i)在总占有率下以及仅在大笼占有率下的多步晶格破坏,和 (ii)在零占有率下以及仅在小笼占有率下的单步破坏。DFT-复合材料模型预测了生成强度的最佳占有率途径和促进分解的临界占有率途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0273/9894853/bce9857264f3/41598_2023_29194_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验