Liaoning Engineering Laboratory of Special Optical Functional Crystals, College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, P. R. China.
College of Electronic Science & Engineering, Jilin University, Changchun, 130 022, P. R. China.
Small Methods. 2023 Apr;7(4):e2201218. doi: 10.1002/smtd.202201218. Epub 2023 Feb 2.
The formation of a lithiophilic phase is an effective method to inhibit the growth of lithium dendrites and obtain high-performance Li metal anodes (LMAs). Nonetheless, previous studies have overlooked the underlying mechanistic studies that modulate the structure of the lithiophilic phase as well as lithiophilicity. A self-supporting sulfur-modified mesoporous gold film on nickel foam (SMGF@NF) for LMAs is created with mesoporous structure, which can provide sufficient active sites for uniform lithium deposition. The synergistic promotion of lithiophilic gold and sulfur leads to uniform lithium nucleation and induces consistent lithium removal during lithium stripping. The doping of S promotes the decomposition of bistrifluoromethanesulfonimide lithium salt to generate lithium fluorde, thus forming a more stable solid electrolyte interface. Combining the multifaceted advantages of SMGF@NF, its lithium-plated electrode can achieve ultralong cycle life in symmetrical batteries (over 1000 h at 0.5 mA cm and 1 mAh cm ) and ultralow overpotential (≈10 mV). Meanwhile, the Li-SMGF@NF||LiFePO full cell achieves a high cycling performance and rate capability (92.4% capacity retention after 1000 cycles at 5 C). The study probes into the composite electrode surface composition and structure, revealing the mechanism of high-performance LMAs.
形成亲锂相是抑制锂枝晶生长并获得高性能锂金属负极(LMAs)的有效方法。然而,先前的研究忽略了调节亲锂相结构和亲锂性的基础机理研究。通过在泡沫镍上制备具有介孔结构的自支撑硫修饰介孔金膜(SMGF@NF),为 LMAs 提供了足够的活性位点,以实现均匀的锂沉积。亲锂金和硫的协同促进作用导致均匀的锂成核,并在锂剥离过程中诱导一致的锂去除。S 的掺杂促进双三氟甲烷磺酰亚胺锂盐的分解,生成氟化锂,从而形成更稳定的固体电解质界面。结合 SMGF@NF 的多方面优势,其镀锂电极在对称电池中可实现超长循环寿命(在 0.5 mA cm 和 1 mAh cm 下超过 1000 小时)和超低过电势(≈10 mV)。同时,Li-SMGF@NF||LiFePO 全电池表现出高循环性能和倍率性能(在 5 C 下循环 1000 次后容量保持率为 92.4%)。该研究深入探讨了复合电极的表面组成和结构,揭示了高性能 LMAs 的机理。