Suppr超能文献

零膨胀空间相关发病率建模

Spatial correlated incidence modeling with zero inflation.

作者信息

Wang Feifei, Li Haofeng, Wang Han, Li Yang

机构信息

Center for Applied Statistics, Renmin University of China, Beijing, China.

School of Statistics, Renmin University of China, Beijing, China.

出版信息

Biom J. 2023 Apr;65(4):e2200090. doi: 10.1002/bimj.202200090. Epub 2023 Feb 2.

Abstract

Disease mapping models have been popularly used to model disease incidence with spatial correlation. In disease mapping models, zero inflation is an important issue, which often occurs in disease incidence datasets with high proportions of zero disease count. It is originated from limited survey coverage or unadvanced testing equipment, which makes some regions have no observed patients. Then excessive zeros recorded in the disease incidence dataset would mess up the true distributions of disease incidence and lead to inaccurate estimates. To address this issue, a zero-inflated disease mapping model is developed in this work. In this model, a zero-inflated process using Bernoulli indicators is assumed to characterize whether the zero inflation occurs for each region. For regions without zero inflation, a coherent and generative disease mapping model is applied for mapping the spatially correlated disease incidence. Independent spatial random effects are incorporated in both processes to account for the spatial patterns of zero inflation and disease incidence. External covariates are also considered in both processes to better explain the disease count data. To estimate the model, a Markov chain Monte Carlo algorithm is proposed. We evaluate model performance via a variety of simulation experiments. Finally, a Lyme disease dataset of Virginia is analyzed to illustrate the application of the proposed model.

摘要

疾病映射模型已被广泛用于对具有空间相关性的疾病发病率进行建模。在疾病映射模型中,零膨胀是一个重要问题,它经常出现在疾病计数为零比例较高的疾病发病率数据集中。它源于调查覆盖范围有限或检测设备不先进,这使得一些地区没有观察到患者。那么疾病发病率数据集中记录的过多零值会扰乱疾病发病率的真实分布,并导致估计不准确。为了解决这个问题,本文开发了一种零膨胀疾病映射模型。在该模型中,假设使用伯努利指标的零膨胀过程来表征每个地区是否发生零膨胀。对于没有零膨胀的地区,应用一个连贯且生成性的疾病映射模型来映射具有空间相关性的疾病发病率。在这两个过程中都纳入了独立的空间随机效应,以考虑零膨胀和疾病发病率的空间模式。在这两个过程中还考虑了外部协变量,以更好地解释疾病计数数据。为了估计模型,提出了一种马尔可夫链蒙特卡罗算法。我们通过各种模拟实验评估模型性能。最后,分析了弗吉尼亚州莱姆病数据集,以说明所提出模型的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验