Suppr超能文献

使用光学相干断层扫描技术对发育中心脏的自动心内膜垫分割和细胞化定量分析。

Automated endocardial cushion segmentation and cellularization quantification in developing hearts using optical coherence tomography.

作者信息

Ling Shan, Chen Jiawei, Lapierre-Landry Maryse, Suh Junwoo, Liu Yehe, Jenkins Michael W, Watanabe Michiko, Ford Stephanie M, Rollins Andrew M

机构信息

Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Biomed Opt Express. 2022 Oct 4;13(11):5599-5615. doi: 10.1364/BOE.467629. eCollection 2022 Nov 1.

Abstract

Of all congenital heart defects (CHDs), anomalies in heart valves and septa are among the most common and contribute about fifty percent to the total burden of CHDs. Progenitors to heart valves and septa are endocardial cushions formed in looping hearts through a multi-step process that includes localized expansion of cardiac jelly, endothelial-to-mesenchymal transition, cell migration and proliferation. To characterize the development of endocardial cushions, previous studies manually measured cushion size or cushion cell density from images obtained using histology, immunohistochemistry, or optical coherence tomography (OCT). Manual methods are time-consuming and labor-intensive, impeding their applications in cohort studies that require large sample sizes. This study presents an automated strategy to rapidly characterize the anatomy of endocardial cushions from OCT images. A two-step deep learning technique was used to detect the location of the heart and segment endocardial cushions. The acellular and cellular cushion regions were then segregated by K-means clustering. The proposed method can quantify cushion development by measuring the cushion volume and cellularized fraction, and also map 3D spatial organization of the acellular and cellular cushion regions. The application of this method to study the developing looping hearts allowed us to discover a spatial asymmetry of the acellular cardiac jelly in endocardial cushions during these critical stages, which has not been reported before.

摘要

在所有先天性心脏缺陷(CHD)中,心脏瓣膜和间隔异常是最常见的类型之一,约占先天性心脏缺陷总负担的50%。心脏瓣膜和间隔的祖细胞是心内膜垫,其在成环心脏中通过多步骤过程形成,该过程包括心胶的局部扩张、内皮-间充质转化、细胞迁移和增殖。为了表征心内膜垫的发育,先前的研究从使用组织学、免疫组织化学或光学相干断层扫描(OCT)获得的图像中手动测量垫的大小或垫细胞密度。手动方法耗时且劳动强度大,阻碍了它们在需要大样本量的队列研究中的应用。本研究提出了一种自动策略,用于从OCT图像中快速表征心内膜垫的解剖结构。采用两步深度学习技术来检测心脏的位置并分割心内膜垫。然后通过K均值聚类将无细胞和细胞垫区域分开。所提出的方法可以通过测量垫体积和细胞化分数来量化垫的发育,还可以绘制无细胞和细胞垫区域的三维空间组织图。将该方法应用于研究发育中的成环心脏,使我们发现在这些关键阶段心内膜垫中无细胞心胶的空间不对称性,这在以前尚未见报道。

相似文献

5
Cell biology of cardiac cushion development.心脏心垫发育的细胞生物学
Int Rev Cytol. 2005;243:287-335. doi: 10.1016/S0074-7696(05)43005-3.

本文引用的文献

1
Endocardial Regulation of Cardiac Development.心脏发育的内膜调节
J Cardiovasc Dev Dis. 2022 Apr 19;9(5):122. doi: 10.3390/jcdd9050122.
6
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验