Suppr超能文献

动态 Pluronic F127 交联增强生物基纳米复合材料用于压电摩擦纳米发电机和自供电传感器。

Dynamic Pluronic F127 Crosslinking Enhancement of Biopolymeric Nanocomposites for Piezo-Triboelectric Single-Hybrid Nanogenerators and Self-Powered Sensors.

机构信息

Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, China.

Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, P. R. China.

出版信息

Small. 2023 May;19(21):e2207384. doi: 10.1002/smll.202207384. Epub 2023 Feb 3.

Abstract

Biomechanical and nanomechanical energy harvesting systems have gained a wealth of interest, resulting in a plethora of research into the development of biopolymeric-based devices as sustainable alternatives. Piezoelectric, triboelectric, and hybrid nanogenerator devices for electrical applications are engineered and fabricated using innovative, sustainable, facile-approach flexible composite films with high performance based on bacterial cellulose and BaTiO , intrinsically and structurally enhanced by Pluronic F127, a micellar cross-linker. The voltage and current outputs of the modified versions with multiwalled carbon nanotube as a conductivity enhancer and post-poling effect are 38 V and 2.8 µA cm , respectively. The multiconnective devices' power density can approach 10 µW cm . The rectified output power is capable of charging capacitors, driving light-emitting diode lights, powering a digital watch and interfacing with a commercial microcontroller board to operate as a piezoresistive force sensor switch as a proof of concept. Magnetoelectric studies show that the composites have the potential to be incorporated into magnetoelectric systems. The biopolymeric composites prove to be desirable candidates for multifunctional energy harvesters and electronic devices.

摘要

生物力学和纳力学能收集系统引起了广泛关注,促使人们开展了大量研究,旨在开发基于生物聚合物的可持续替代设备。采用创新性、可持续且简便的方法,基于细菌纤维素和 BaTiO ,制备了具有高性能的柔性复合薄膜,其中加入了结构增强型的胶束交联剂 Pluronic F127,用于制造压电、摩擦电和混合纳米发电机等电气应用设备。经过修饰的版本中加入多壁碳纳米管作为导电性增强剂和后极化效应,其电压和电流输出分别为 38 V 和 2.8 µA cm 。多连接设备的功率密度可接近 10 µW cm 。经整流后的输出功率可用于给电容器充电、驱动发光二极管灯、为数字手表供电,并与商业微控制器板接口,作为压阻式力传感器开关运行,以此验证概念。磁电研究表明,这些复合材料有望应用于磁电系统。生物聚合物复合材料被证明是多功能能量收集器和电子设备的理想候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验