School of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China.
School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, 330000, China.
Bull Math Biol. 2023 Feb 3;85(3):20. doi: 10.1007/s11538-023-01123-w.
Syphilis and HIV infections form a dangerous combination. In this paper, we propose an epidemic model of HIV-syphilis coinfection. The model always has a unique disease-free equilibrium, which is stable when both reproduction numbers of syphilis and HIV are less than 1. If the reproduction number of syphilis (HIV) is greater than 1, there exists a unique boundary equilibrium of syphilis (HIV), which is locally stable if the invasion number of HIV (syphilis) is less than 1. Coexistence equilibrium exists and is stable when all reproduction numbers and invasion numbers are greater than 1. Using data of syphilis cases and HIV cases from the US, we estimated that both reproduction numbers for syphilis and HIV are slightly greater than 1, and the boundary equilibrium of syphilis is stable. In addition, we observed competition between the two diseases. Treatment for primary syphilis is more important in mitigating the transmission of syphilis. However, it might lead to increase of HIV cases. The results derived here could be adapted to other multi-disease scenarios in other regions.
梅毒和 HIV 感染构成了一个危险的组合。在本文中,我们提出了一个 HIV-梅毒合并感染的传染病模型。该模型始终存在一个独特的无病平衡点,当梅毒和 HIV 的繁殖数都小于 1 时,该平衡点是稳定的。如果梅毒(HIV)的繁殖数大于 1,则存在一个独特的梅毒(HIV)边界平衡点,如果 HIV(梅毒)的入侵数小于 1,则该平衡点是局部稳定的。当所有繁殖数和入侵数都大于 1 时,共存平衡点存在且稳定。利用来自美国的梅毒病例和 HIV 病例数据,我们估计梅毒和 HIV 的繁殖数都略大于 1,并且梅毒的边界平衡点是稳定的。此外,我们观察到这两种疾病之间存在竞争。治疗原发性梅毒对于减轻梅毒的传播更为重要。然而,这可能会导致 HIV 病例的增加。这里得出的结果可以适用于其他地区的其他多疾病情况。