Suppr超能文献

带 coinfection 的免疫 - 传染病耦合系统的建模与研究。

Modeling and Research on an Immuno-Epidemiological Coupled System with Coinfection.

机构信息

School of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China.

Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, Gainesville, FL, 32611-8105, USA.

出版信息

Bull Math Biol. 2021 Oct 13;83(11):116. doi: 10.1007/s11538-021-00946-9.

Abstract

In this paper, a two-strain model with coinfection that links immunological and epidemiological dynamics across scales is formulated. On the with-in host scale, the two strains eliminate each other with the strain having the larger immunological reproduction number persisting. However, on the population scale coinfection is a common occurrence. Individuals infected with strain one can become coinfected with strain two and similarly for individuals originally infected with strain two. The immunological reproduction numbers [Formula: see text], the epidemiological reproduction numbers [Formula: see text] and invasion reproduction numbers [Formula: see text] are computed. Besides the disease-free equilibrium, there are strain one and strain two dominance equilibria. The disease-free equilibrium is locally asymptotically stable when the epidemiological reproduction numbers [Formula: see text] are smaller than one. In addition, each strain dominance equilibrium is locally asymptotically stable if the corresponding epidemiological reproduction number is larger than one and the invasion reproduction number of the other strain is smaller than one. The coexistence equilibrium exists when all the reproduction numbers are greater than one. Simulations suggest that when both invasion reproduction numbers are smaller than one, bistability occurs with one of the strains persisting or the other, depending on initial conditions.

摘要

本文提出了一种具有双重感染的两菌株模型,该模型将免疫和流行病学动态联系起来跨越多个尺度。在宿主内部尺度上,两种菌株通过具有较大免疫繁殖数的菌株持续存在来相互消除。然而,在人口尺度上,双重感染是很常见的。最初感染菌株一的个体可能会被菌株二再次感染,反之亦然。计算了免疫繁殖数[Formula: see text]、流行病学繁殖数[Formula: see text]和入侵繁殖数[Formula: see text]。除了无病平衡点外,还有菌株一和菌株二优势平衡点。当流行病学繁殖数[Formula: see text]小于 1 时,无病平衡点是局部渐近稳定的。此外,如果相应的流行病学繁殖数大于 1 且另一种菌株的入侵繁殖数小于 1,则每个菌株优势平衡点是局部渐近稳定的。当所有繁殖数都大于 1 时,共存平衡点存在。模拟表明,当两个入侵繁殖数都小于 1 时,双稳态发生,取决于初始条件,其中一种菌株持续存在或另一种菌株持续存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3867/8511867/a969cf0bbc2f/11538_2021_946_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验