Suppr超能文献

开发软件以规范心力衰竭患者运动性振荡通气的临床诊断。

Software development to standardize the clinical diagnosis of exercise oscillatory ventilation in heart failure.

机构信息

Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.

Samsung R&D Institute Brazil - SRBR, Universidade Federal de São Carlos (UFSCAR), Campinas, SP, Brazil.

出版信息

J Clin Monit Comput. 2023 Oct;37(5):1247-1253. doi: 10.1007/s10877-023-00976-9. Epub 2023 Feb 3.

Abstract

BACKGROUND

Exercise oscillatory ventilation (EOV) is characterized by periodic oscillations of minute ventilation during cardiopulmonary exercise testing (CPET). Despite its prognostic value in chronic heart failure (HF), its diagnosis is complex due to technical limitations. An easier and more accurate way of EOV identification can contribute to a better approach and clinical diagnosis. This study aims to describe a software development to standardize the EOV diagnosis from CPET's raw data in heart failure patients and test its reliability (intra- and inter-rater).

METHODS

The software was developed in the "drag-and-drop" G-language using LabVIEW. Five EOV definitions (Ben-Dov, Corrà, Kremser, Leite, and Sun definitions), two alternative approaches, one smoothing technique, and some basic statistics were incorporated into the interface to visualize four charts of the ventilatory response. EOV identification was based on a set of criteria verified from the interaction between amplitude, cycle length, and oscillation time. Two raters analyzed the datasets. In addition, repeated measurements were verified after six months using about 25% of the initial data. Cohen's kappa coefficient (κ) was used to investigate the reliability.

RESULTS

Overall, 391 tests were analyzed in duplicate (inter-rater reliability) and 100 tests were randomized for new analysis (intra-rater reliability). High inter-rater (κ > 0.80) and intra-rater (κ > 0.80) reliability of the five EOV diagnoses were observed.

CONCLUSION

The present study proposes novel semi-automated software to detect EOV in HF, with high inter and intra-rater agreements. The software project and its tutorial are freely available for download.

摘要

背景

运动性振荡通气(EOV)的特点是心肺运动测试(CPET)期间分钟通气量周期性振荡。尽管它在慢性心力衰竭(HF)中的预后价值,但由于技术限制,其诊断较为复杂。更简单、更准确的 EOV 识别方法有助于更好的方法和临床诊断。本研究旨在描述一种软件开发,以标准化心力衰竭患者 CPET 原始数据中的 EOV 诊断,并测试其可靠性(内部和外部评分者)。

方法

该软件使用 LabVIEW 的“拖放”G 语言开发。五个 EOV 定义(Ben-Dov、Corrà、Kremser、Leite 和 Sun 定义)、两种替代方法、一种平滑技术和一些基本统计数据被整合到界面中,以可视化呼吸反应的四个图表。EOV 识别基于从振幅、周期长度和振荡时间相互作用中验证的一组标准。两名评分者分析了数据集。此外,还在六个月后使用初始数据的约 25%进行了重复测量。使用 Cohen's kappa 系数(κ)来研究可靠性。

结果

总体而言,对 391 次测试进行了重复分析(外部评分者可靠性),对 100 次测试进行了随机新分析(内部评分者可靠性)。观察到五种 EOV 诊断的高外部评分者(κ>0.80)和内部评分者(κ>0.80)可靠性。

结论

本研究提出了一种新颖的半自动软件,用于检测 HF 中的 EOV,具有较高的内外评分者一致性。软件项目及其教程可免费下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验