Suppr超能文献

用于量化大鼠心房颤动基质的客观工具。

An objective tool for quantifying atrial fibrillation substrate in rats.

机构信息

Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

Am J Physiol Heart Circ Physiol. 2023 Apr 1;324(4):H461-H469. doi: 10.1152/ajpheart.00728.2022. Epub 2023 Feb 3.

Abstract

The utility of rodents for research related to atrial fibrillation (AF) is growing exponentially. However, the obtained arrhythmic waveforms are often mixed with ventricular signals and the ability to analyze regularity and complexity of such events is limited. Recently, we introduced an implantable quadripolar electrode adapted for advanced atrial electrophysiology in ambulatory rats. Notably, we have found that the implantation itself leads to progressive atrial remodeling, presumably because of mechanical loading of the atria. In the present study, we developed an algorithm to clean the atrial signals from ventricular mixing and thereafter quantify the AF substrate in an objective manner based on waveform complexity. Rats were sequentially examined 1-, 4-, and 8-wk postelectrode implantation using a standard AF triggering protocol. Preburst ventricular mixing was sampled and automatically subtracted based on QRS detection in the ECG. Thereafter, the "pure" atrial signals were analyzed by Lempel-Ziv complexity algorithm and a complexity ratio (CR) was defined for each signal by normalizing the postburst to the preburst values. Receiver operating characteristic (ROC) curve analysis indicated an optimal CR cutoff of 1.236 that detected irregular arrhythmic events with high sensitivity (94.5%), specificity (93.1%), and area under the curve (AUC) (0.96, 95% confidence interval, 0.945-0.976). Automated and unbiased analysis indicated a gradual increase in signal complexity over time with augmentation of high frequencies in power spectrum analysis. Our findings indicate that CR algorithm detects irregularity in a highly efficient manner and can also detect the atrial remodeling induced by electrode implantation. Thus, CR analysis can strongly facilitate standardized AF research in rodents. Rodents are increasingly used in AF research. However, because of technical difficulties including atrial waveform mixing by ventricular signals, most studies do not discriminate between irregular (i.e., AF) and regular atrial arrhythmias. Here, we develop an unbiased computerized tool to "pure" the atrial signals from ventricular mixing and thereafter analyze AF substrate based on the level of irregularity in an objective manner. This novel tool can facilitate standardized AF research in rodents.

摘要

用于研究心房颤动(AF)的啮齿动物的效用正在呈指数级增长。然而,获得的心律失常波形通常与心室信号混合,并且分析此类事件的规律性和复杂性的能力受到限制。最近,我们引入了一种可植入的四极电极,适用于可移动大鼠的先进心房电生理学。值得注意的是,我们发现植入本身会导致心房进行性重塑,这可能是由于心房的机械负荷所致。在本研究中,我们开发了一种算法,可清除心室混合引起的心房信号,并此后基于波形复杂性客观地量化 AF 底物。使用标准的 AF 触发方案,在电极植入后 1、4 和 8 周对大鼠进行连续检查。基于心电图中的 QRS 检测,对预爆发心室混合进行采样并自动减去。此后,通过 Lempel-Ziv 复杂度算法分析“纯”心房信号,并通过将爆发后值与爆发前值归一化来为每个信号定义复杂度比(CR)。接收者操作特征(ROC)曲线分析表明,最佳 CR 截止值为 1.236,该值以高灵敏度(94.5%)、特异性(93.1%)和曲线下面积(AUC)(0.96,95%置信区间,0.945-0.976)检测到不规则的心律失常事件。自动且无偏的分析表明,随着功率谱分析中高频的增加,信号复杂度随时间逐渐增加。我们的发现表明,CR 算法以高效的方式检测不规则性,并且还可以检测电极植入引起的心房重塑。因此,CR 分析可以极大地促进啮齿动物的标准化 AF 研究。啮齿动物越来越多地用于 AF 研究。然而,由于包括由心室信号引起的心房波混合在内的技术困难,大多数研究无法区分不规则(即,AF)和规则性的心房心律失常。在这里,我们开发了一种公正的计算机工具,可从心室混合中“纯化”心房信号,此后以客观的方式基于不规则性的水平分析 AF 底物。这种新工具可以促进啮齿动物的标准化 AF 研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验