Hasimoto-Beltran Rogelio, Canul-Ku Mario, Díaz Méndez Guillermo M, Ocampo-Torres Francisco J, Esquivel-Trava Bernardo
Centro de Investigación en Matemáticas (CIMAT), Jalisco S/N, Col. Valenciana, Guanajuato 36023, Guanajuato, Mexico.
Centro de Investigación en Matemáticas (CIMAT), Jalisco S/N, Col. Valenciana, Guanajuato 36023, Guanajuato, Mexico.
Mar Pollut Bull. 2023 Mar;188:114651. doi: 10.1016/j.marpolbul.2023.114651. Epub 2023 Feb 1.
One of the major threats to marine ecosystems is pollution, particularly, that associated with the offshore oil and gas industry. Oil spills occur in the world's oceans every day, either as large-scale spews from drilling-rig or tanker accidents, or as smaller discharges from all sorts of sea-going vessels. In order to contribute to the timely detection and monitoring of oil spills over the oceans, we propose a new Multi-channel Deep Neural Network (M-DNN) segmentation model and a new and effective Synthetic Aperture Radar (SAR) image dataset, that enable us to emit forewarnings in a prompt and reliable manner. Our proposed M-DNN is a pixel-level segmentation model intended to improve previous DNN oil-spill detection models, by taking into account multiple input channels, complex oil shapes at different scales (dimensions) and evolution in time, and look-alikes from low wind speed conditions. Our methodology consists of the following components: 1) New Multi-channel SAR Image Database Development; 2) Multi-Channel DNN Model based on U-net and ResNet; and 3) Multi-channel DNN Training and Transfer Learning. Due to the lack of public oil spill databases guaranteeing a correct learning process of the M-DNN, we developed our own database consisting of 16 ENVISAT-ASAR images acquired over the Gulf of Mexico during the Deepwater Horizon (DWH) blowout, off the west coast of South Korea during the Hebei Spirit oil tanker collision, and over the Black Sea. These images were pre-processed to create a 3-channel input image I = {I, I, I}, to feed in and train our M-DNN. The first channel I represents the radiometric values of the original SAR Images, the second and third channels are derived from I; in particular, I represents the output of the wind speed estimation using CMOD5 algorithm (Hersbach et al., 2003) and I represents the variance of I that incorporates texture information and at the same time encapsulates oil spill transition regions. I channels were split and linearly transformed for data augmentation (rotation and reflection) to obtain a total of 80,772 sub-images of 224 × 224 pixels. From the entire database, 80 % of the sub-images were used in the DNN training process, the remaining (20 %) was used for testing our final architecture. Our experimental results show higher pixel-level classification accuracy when 2 or 3 channels are used in the M-DNN, reaching an accuracy of 98.56 % (the highest score reported in the literature for DNN models). Additionally, our M-DNN model provides fast training convergence rate (about 14 times better on the average than previous works), which proves the effectiveness of our proposed method. According to our knowledge, our work is the first multi-channel DNN based scheme for the classification of oil spills at different scales.
海洋生态系统面临的主要威胁之一是污染,尤其是与近海石油和天然气行业相关的污染。石油泄漏每天都在世界海洋中发生,或是钻井平台或油轮事故导致的大规模泄漏,或是各类海船的小规模排放。为了有助于及时检测和监测海洋上的石油泄漏,我们提出了一种新的多通道深度神经网络(M-DNN)分割模型以及一个新的有效合成孔径雷达(SAR)图像数据集,这使我们能够迅速且可靠地发出预警。我们提出的M-DNN是一种像素级分割模型,旨在通过考虑多个输入通道、不同尺度(维度)下复杂的油体形状及其随时间的演变,以及低风速条件下的相似物,来改进先前的DNN石油泄漏检测模型。我们的方法由以下部分组成:1)新的多通道SAR图像数据库开发;2)基于U-net和ResNet的多通道DNN模型;3)多通道DNN训练和迁移学习。由于缺乏能保证M-DNN正确学习过程的公共石油泄漏数据库,我们开发了自己的数据库,该数据库由16幅ENVISAT-ASAR图像组成,这些图像分别是在“深水地平线”(DWH)井喷期间于墨西哥湾获取的、在“河北精神”号油轮碰撞期间于韩国西海岸外获取的以及在黑海获取的。这些图像经过预处理以创建一个3通道输入图像I = {I, I, I},用于输入和训练我们的M-DNN。第一个通道I代表原始SAR图像的辐射值,第二个和第三个通道由I派生而来;具体而言,I代表使用CMOD5算法(赫斯巴赫等人,2003年)进行风速估计的输出,I代表I的方差,其纳入了纹理信息并同时封装了石油泄漏过渡区域。对I通道进行分割并进行线性变换以进行数据增强(旋转和反射),从而获得总共80772张224×224像素的子图像。在整个数据库中,80%的子图像用于DNN训练过程,其余(20%)用于测试我们的最终架构。我们的实验结果表明,当在M-DNN中使用2个或3个通道时,像素级分类准确率更高,达到了98.56%(这是文献中报道的DNN模型的最高分数)。此外,我们的M-DNN模型提供了快速的训练收敛速度(平均比先前的工作快约14倍),这证明了我们所提方法的有效性。据我们所知,我们的工作是首个基于多通道DNN的不同尺度石油泄漏分类方案。