Suppr超能文献

探讨铜矿钼矿附近土壤 PTE 地球化学与“可见-近红外光谱”模式的关系(亚美尼亚)。

Exploring relationship of soil PTE geochemical and "VIS-NIR spectroscopy" patterns near Cu-Mo mine (Armenia).

机构信息

Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia.

Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, 0025, Yerevan, Armenia.

出版信息

Environ Pollut. 2023 Apr 15;323:121180. doi: 10.1016/j.envpol.2023.121180. Epub 2023 Jan 31.

Abstract

PTE contamination of soils remains one of the global environmental concerns. The ways of detecting and monitoring PTE concentrations in soils varies including traditional field sampling accompanied by sample preparation and chemical analysis and state of the art visible and near-infrared (Vis-NIR) spectroscopic approaches. Among the different Machine Learning (ML) to extract soil information from spectra and to explore the relationship between spectral reflectance data and soil PTE content PLSR method is a well-established one to construct a soil PTE estimation model. This study aimed to explore the relationship of soil PTE geochemical and VIS-NIR spectroscopy characteristics in agricultural soils near Cu-Mo mine area in Armenia. PLSR method is applied to identify the links between the spectra and agricultural soil Ti, V, Cr, Mn, Fe, Co, Ba, Pb, Zn, Cu, Sr, Zr and Mo contents to reveal the potential of VIS-NIR spectroscopy in ex-situ monitoring of Kajaran soils. The results show that different portions of VIS-NIR spectra are responsible for Ti (1100-1200 nm, 2350-2500 nm), V (350-500 nm, 700-750 nm, 1000-1100 nm, 1400-2500 nm), Cr (1300-1400 nm, 1900-2100 nm) and Ba (450-500 nm, 600-800 nm, 1050-1700 nm, 2000-2100 nm, 2350-2400 nm) estimations through PLSR correspondingly. However, among the studied PTEs Ti and V, which shows significant negative correlations in VIS-NIR spectra registered at around 400-600 nm and 850-1150 nm regions, are remarkable and promising with the PLSR estimation results using VIS-NIR spectra Ti (R = 0.74), V (R = 0.71). This study shows that VIS-NIR spectroscopy has a high potential for the estimation of at least several PTE in soils and PLSR modelis reliable for deriving information from there.

摘要

土壤中 PTE 的污染仍然是全球环境关注的问题之一。检测和监测土壤中 PTE 浓度的方法包括传统的田间采样,以及样品制备和化学分析,以及先进的可见和近红外(Vis-NIR)光谱方法。在从光谱中提取土壤信息并探索光谱反射率数据与土壤 PTE 含量之间的关系的不同机器学习(ML)方法中,PLSR 方法是建立土壤 PTE 估算模型的一种成熟方法。本研究旨在探索亚美尼亚铜钼矿区附近农业土壤中 PTE 地球化学和 Vis-NIR 光谱特征之间的关系。PLSR 方法用于识别光谱与农业土壤 Ti、V、Cr、Mn、Fe、Co、Ba、Pb、Zn、Cu、Sr、Zr 和 Mo 含量之间的联系,以揭示 Vis-NIR 光谱在 Kajaran 土壤原位监测中的潜力。结果表明,VIS-NIR 光谱的不同部分负责 Ti(1100-1200nm、2350-2500nm)、V(350-500nm、700-750nm、1000-1100nm、1400-2500nm)、Cr(1300-1400nm、1900-2100nm)和 Ba(450-500nm、600-800nm、1050-1700nm、2000-2100nm、2350-2400nm)的估算,相应地通过 PLSR 进行。然而,在所研究的 PTE 中,Ti 和 V 之间存在显著的负相关关系,在 VIS-NIR 光谱中,在 400-600nm 和 850-1150nm 区域附近有明显的相关性,并且利用 VIS-NIR 光谱 Ti(R=0.74)、V(R=0.71)的 PLSR 估算结果具有很高的潜力。本研究表明,VIS-NIR 光谱法在估算土壤中至少几种 PTE 方面具有很高的潜力,PLSR 模型可用于从土壤中提取信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验