Biophysics Program, University of Wisconsin - Madison, Madison, WI 53706, USA.
Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA.
J Mol Biol. 2023 Mar 15;435(6):167990. doi: 10.1016/j.jmb.2023.167990. Epub 2023 Feb 1.
Stable 37 °C open complexes (OC) of E. coli RNA polymerase (RNAP) at λP and T7A1 promoters form at similar rates but have very different lifetimes. To understand the downstream interactions responsible for OC lifetime, how promoter sequence directs them and when they form, we report lifetimes of stable OC and unstable late (I) intermediates for promoters with different combinations of λP (L) and T7A1 (T) discriminators, core promoters and UP elements. I lifetimes are similarly short, while stable OC lifetimes differ greatly, determined largely by the discriminator and modulated by core-promoter and UP elements. The free energy change ΔG for I → stable OC is approximately -4 kcal more favorable for L-discriminator than for T-discriminator promoters. Downstream-truncation at +6 (DT+6) greatly destabilizes OC at L-discriminator but not T-discriminator promoters, making all ΔG values similar (approximately -4 kcal). Urea reduces OC lifetime greatly by affecting ΔG. We deduce that urea acts by disfavoring coupled folding of key elements of the β'-clamp, that I is an open-clamp OC, and that clamp-closing in I → stable OC involves coupled folding. Differences in ΔG between downstream-truncated and full-length promoters yield contributions to ΔG from interactions with downstream mobile elements (DME) including β-lobe and β'-jaw, more favorable for L-discriminator than for T-discriminator promoters. We deduce how competition between far-downstream DNA and σ region 1.1 affects ΔG values. We discuss variant-specific ΔG contributions in terms of the allosteric network by which differences in discriminator and -10 sequence are sensed and transmitted downstream to affect DME-duplex interactions in I → stable OC.
稳定的 37°C 大肠杆菌 RNA 聚合酶 (RNAP) 的开放复合物 (OC) 在 λP 和 T7A1 启动子上以相似的速率形成,但它们的寿命却非常不同。为了了解负责 OC 寿命的下游相互作用、启动子序列如何指导它们以及它们何时形成,我们报告了具有不同 λP(L)和 T7A1(T)判别子、核心启动子和 UP 元件组合的启动子的稳定 OC 和不稳定晚期(I)中间体的寿命。I 中间体的寿命同样很短,而稳定 OC 的寿命则有很大差异,主要由判别子决定,并受核心启动子和 UP 元件的调节。I 向稳定 OC 的自由能变化 ΔG 对于 L 判别子启动子比 T 判别子启动子大约有利-4 千卡。+6 的下游截断(DT+6)大大降低了 L 判别子但不降低 T 判别子启动子的 OC 的稳定性,使所有 ΔG 值都相似(大约-4 千卡)。脲通过影响 ΔG 极大地降低了 OC 的寿命。我们推断,脲的作用是不利于β'-夹关键元素的偶联折叠,I 是开放夹 OC,并且在 I 向稳定 OC 的过程中涉及偶联折叠。下游截断和全长启动子之间的 ΔG 差异导致与下游可移动元件(DME)包括β-叶和β'-颌的相互作用对 ΔG 的贡献,对于 L 判别子启动子比 T 判别子启动子更有利。我们推断出远下游 DNA 和 σ 区域 1.1 之间的竞争如何影响 ΔG 值。我们根据变构网络讨论了变体特异性 ΔG 贡献,通过该网络可以感知和向下游传递判别子和-10 序列的差异,以影响 I 向稳定 OC 中的 DME-双螺旋相互作用。