Suppr超能文献

生物素标记还原端和非还原端,以创建即插即用的多糖。

Biotinylation of reducing and non-reducing termini to create plug-and-play polysaccharides.

机构信息

School of Natural Sciences, Massey University, Palmerston North, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand.

School of Natural Sciences, Massey University, Palmerston North, New Zealand.

出版信息

Carbohydr Polym. 2023 Apr 1;305:120569. doi: 10.1016/j.carbpol.2023.120569. Epub 2023 Jan 10.

Abstract

Single-molecule studies continue to grow in popularity. In cases where biopolymer samples of interest exhibit variations in fine-structure between individual chains such single-molecule studies uniquely offer the promise of revealing deep structure-function relationships. Polysaccharides are typically studied in bulk and, as such, their study could greatly benefit from the application of single-molecule techniques. However, while for example single-molecule optical tweezers (OT) studies have become commonplace for DNA, studies of polysaccharides have lagged behind somewhat, complicated by the difficulty of studying molecules that amongst other things have more complex end-group chemistry. Recently, divalent streptavidin linkers have been shown to be capable of concatenating two pieces of biotin-terminated DNA to produce robust composite strings that run intact through conventional gels, and can be used in single-molecule OT experiments (Mohandas, Kent, Raudsepp, Jameson, & Williams, 2022). By using two such streptavidin linkers, biotin-terminated polymers could be inserted between two sections of DNA in order to facilitate single-molecule experiments on biopolymers that are currently difficult to address by other means. Here, we describe a generic approach for placing the required biotin moieties at both ends of polysaccharide chains, producing plug-and-play polysaccharide inserts that can be incorporated into composite polymer strings using streptavidin linking hubs.

摘要

单分子研究持续受到关注。在感兴趣的生物聚合物样本中,各个分子链之间存在细微结构差异的情况下,单分子研究独特地提供了揭示深层次结构-功能关系的可能性。多糖通常在整体上进行研究,因此,如果应用单分子技术,它们的研究将受益匪浅。然而,虽然例如单分子光学镊子 (OT) 研究已经成为 DNA 研究的常规手段,但多糖的研究却有些滞后,这是由于研究具有更复杂末端化学的分子比较困难所致。最近,二价链霉亲和素连接物已被证明能够将两个生物素末端的 DNA 片段连接在一起,形成坚固的复合链,这些链可以完整地穿过常规凝胶,并可用于单分子 OT 实验(Mohandas、Kent、Raudsepp、Jameson 和 Williams,2022 年)。通过使用两个这样的链霉亲和素连接物,可以在 DNA 的两个部分之间插入生物素末端的聚合物,以便于目前难以通过其他方法解决的生物聚合物的单分子实验。在这里,我们描述了一种通用方法,可将所需的生物素部分放置在多糖链的两端,生成即插即用的多糖插入物,这些插入物可以使用链霉亲和素连接枢纽整合到复合聚合物链中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验