Suppr超能文献

具有仿生离子通道的空心颗粒准固态电解质用于高性能锂金属电池

Hollow-Particles Quasi-Solid-State Electrolytes with Biomimetic Ion Channels for High-Performance Lithium-Metal Batteries.

作者信息

Liu Zixin, Chen Weizhe, Zhang Fengling, Wu Feng, Chen Renjie, Li Li

机构信息

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

出版信息

Small. 2023 May;19(18):e2206655. doi: 10.1002/smll.202206655. Epub 2023 Feb 3.

Abstract

Solid-state electrolytes (SSEs) are the core material of solid-state lithium metal batteries (SLMBs), which are being researched urgently owing to their high energy and safety. Both high ionic conductivity and excellent cycling stability remain the primary goal of solid-state electrolytes. Herein, inspired by K /Na ion channels in cell membrane of eukaryotes, a novel hollow UiO-66 with biomimetic ion channels based on quasi-solid-state electrolytes (QSSEs) is designed. The hollow UiO-66 spheres containing biomimetic ion channels can spontaneously combine anions and incorporate more lithium ions, creating improved ionic conductivity (1.15 × 10 S cm ) and lithium-ion transference number (0.70) at room temperature. The long-term cycling of symmetric batteries and COMSOL simulations demonstrate that this biomimetic strategy enables uniform ion flux to suppress Li dendrites. Furthermore, the Li metal full cells paired with LiFePO cathode exhibit excellent cycling stability and rate performance. Consequently, the strategy of designing biomimetic QSSEs opens up a new path for developing high-performance electrolytes for SLMBs.

摘要

固态电解质(SSEs)是固态锂金属电池(SLMBs)的核心材料,由于其高能量和安全性,目前正受到迫切研究。高离子电导率和优异的循环稳定性仍然是固态电解质的主要目标。在此,受真核细胞膜中K⁺/Na⁺离子通道的启发,设计了一种基于准固态电解质(QSSEs)的具有仿生离子通道的新型中空UiO-66。含有仿生离子通道的中空UiO-66球体能够自发结合阴离子并纳入更多锂离子,在室温下实现了更高的离子电导率(1.15×10⁻⁴ S cm⁻¹)和锂离子迁移数(0.70)。对称电池的长期循环和COMSOL模拟表明,这种仿生策略能够实现均匀的离子通量,从而抑制锂枝晶的生长。此外,与LiFePO₄ 正极配对的锂金属全电池表现出优异的循环稳定性和倍率性能。因此,设计仿生QSSEs的策略为开发用于SLMBs的高性能电解质开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验